6 research outputs found

    Atomic layer deposition of aluminum fluoride using Al(CH<sub>3</sub>)<sub>3</sub> and SF<sub>6</sub> plasma

    Get PDF
    Metal fluorides typically have a low refractive index and a very high transparency and find many applications in optical and optoelectronic devices. Nearly stoichiometric, high-purity AlF3 films were deposited by atomic layer deposition (ALD) using trimethylaluminum [Al(CH3)3] and SF6 plasma. Self-limiting growth was confirmed and the growth per cycle was determined to range from 1.50 Å to 0.55 Å for deposition temperatures between 50 °C and 300 °C. In addition, the film density of ∼2.8 g cm-3 was found to be relatively close to the bulk value of 3.1 g cm-3. Vacuum ultraviolet spectroscopic ellipsometry measurements over the wavelength range of 140-2275 nm showed a refractive index n of 1.35 at 633 nm, and an extinction coefficient k of &lt;10-4 above 300 nm, for all deposition temperatures. Optical emission spectroscopy during the SF6 plasma exposure step of the ALD cycle revealed the formation of C2H2 and CF2 species, resulting from the interaction of the plasma with the surface after Al(CH3)3 exposure. On the basis of these results, a reaction mechanism is proposed in which F radicals from the SF6 plasma participate in the surface reactions. Overall, this work demonstrates that SF6 plasma is a promising co-reactant for ALD of metal fluorides, providing an alternative to co-reactants such as metal fluorides, HF, or HF-pyridine.</p

    Atomic layer deposition of aluminum fluoride using Al(CH<sub>3</sub>)<sub>3</sub> and SF<sub>6</sub> plasma

    Get PDF
    Metal fluorides typically have a low refractive index and a very high transparency and find many applications in optical and optoelectronic devices. Nearly stoichiometric, high-purity AlF3 films were deposited by atomic layer deposition (ALD) using trimethylaluminum [Al(CH3)3] and SF6 plasma. Self-limiting growth was confirmed and the growth per cycle was determined to range from 1.50 Å to 0.55 Å for deposition temperatures between 50 °C and 300 °C. In addition, the film density of ∼2.8 g cm-3 was found to be relatively close to the bulk value of 3.1 g cm-3. Vacuum ultraviolet spectroscopic ellipsometry measurements over the wavelength range of 140-2275 nm showed a refractive index n of 1.35 at 633 nm, and an extinction coefficient k of &lt;10-4 above 300 nm, for all deposition temperatures. Optical emission spectroscopy during the SF6 plasma exposure step of the ALD cycle revealed the formation of C2H2 and CF2 species, resulting from the interaction of the plasma with the surface after Al(CH3)3 exposure. On the basis of these results, a reaction mechanism is proposed in which F radicals from the SF6 plasma participate in the surface reactions. Overall, this work demonstrates that SF6 plasma is a promising co-reactant for ALD of metal fluorides, providing an alternative to co-reactants such as metal fluorides, HF, or HF-pyridine.</p

    Low Earth Orbit Effects on Indium Tin Oxide and Polyester and Comparison With Laboratory Simulations

    No full text
    Laboratory simulation of the low Earth orbit (LEO) environment using oxygen plasma ashers are discussed. Their effectiveness as space simulators are compared with LEO through analysis of indium tin oxide (ITO) thin films and bulk polyester exposed to both environments. Spectrophotometry and atomic force microscopy have been used to characterize optical and microstructural changes as a result of exposure to the simulated (oxygen plasma asher) and the actual space environment aboard shuttle flight STS-46. Results show that the low Earth orbit space environment is much harsher than the plasma asher on the optical properties of ITO as well as the surface roughness of polyester. On space-exposed samples, a significant shift in the ITO absorption edge is seen for fluences of 2 x 10^2^0 atoms cm^-^2 but not on films exposed in the asher. The surface roughness of polyester exposed in the asher increase by a factor of 5.5, while that of polyester exposed in space increases by a factor of 20 for the same atomic oxygen fluence. The directional nature and higher kinetic energy of atomic oxygen in LEO serves to erode polyester more than in the asher. The different results obtained in the asher for both ITO and polyester bring into question the suitability of using plasma ashers as space simulators for these materials

    Plasmonic Nanoparticle-Based Metamaterials: From Electric to Magnetic Response

    No full text

    A Surface Scientist's view on Spectroscopic Ellipsometry

    No full text
    none1noneMaurizio CanepaCanepa, Maurizi
    corecore