28 research outputs found

    Q2Q^2 Dependence of Quadrupole Strength in the γpΔ+(1232)pπ0\gamma^*p\to\Delta^+(1232)\to p \pi^0 Transition

    Full text link
    Models of baryon structure predict a small quadrupole deformation of the nucleon due to residual tensor forces between quarks or distortions from the pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through the Q2Q^2 dependence of the magnetic (M1+M_{1+}), electric (E1+E_{1+}), and scalar (S1+S_{1+}) multipoles in the γpΔ+pπ0\gamma^* p \to \Delta^+ \to p \pi^0 transition. We report new experimental values for the ratios E1+/M1+E_{1+}/M_{1+} and S1+/M1+S_{1+}/M_{1+} over the range Q2Q^2= 0.4-1.8 GeV2^2, extracted from precision p(e,ep)πp(e,e 'p)\pi^{\circ} data using a truncated multipole expansion. Results are best described by recent unitary models in which the pion cloud plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett. (References, figures and table updated, minor changes.

    The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake

    No full text
    A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption

    Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump

    Get PDF
    AbstractThe predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR
    corecore