214 research outputs found

    Spherical collapse with dark energy

    Full text link
    I discuss the work of Maor and Lahav [1], in which the inclusion of dark energy into the spherical collapse formalism is reviewed. Adopting a phenomenological approach, I consider the consequences of - a) allowing the dark energy to cluster, and, b) including the dark energy in the virialization process. Both of these issues affect the final state of the system in a fundamental way. The results suggest a potentially differentiating signature between a true cosmological constant and a dynamic form of dark energy. This signature is unique in the sense that it does not depend on a measurement of the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop, 19 - 24 June 2005, Peyresq, Franc

    Nonlocal calculation for nonstrange dibaryons and tribaryons

    Get PDF
    We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are NNNN, NΔN\Delta, and ΔΔ\Delta\Delta, while the three-body systems are NNNNNN, NNΔNN\Delta, NΔΔN\Delta\Delta, and ΔΔΔ\Delta\Delta\Delta. We use as input the nonlocal NNNN, NΔN\Delta, and ΔΔ\Delta\Delta potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.Comment: 19 pages. To be published in Physical Review

    Chameleonic Generalized Brans--Dicke model and late-time acceleration

    Full text link
    In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in the framework of FRW universes. The bouncing solution and phantom crossing is investigated for the model. Two independent cosmological tests: Cosmological Redshift Drift (CRD) and distance modulus are applied to test the model with the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011

    Urethral obstruction due to seminal vesiculitis in a sheep - case report

    Get PDF
    ABSTRACT We report a case of urethral obstruction due to seminal vesiculitis in a Dorper sheep, with symptoms of anuria, rectal prolapse, orchitis/epididymitis, and uroperitoneum and biochemical tests indicating severe azotemia. The animal died due to advanced azotemia, and necropsy revealed kidneys with cortical and medullary necrosis, pyelonephritis of renal calyces, hydronephrosis, ruptured and necrotic bladder, and vesicular, bulbourethral, and ampoule accessory sex glands. There was prostate hyperplasia that revealed a large amount of pus in the cross section, which was also observed bilaterally in the epididymis and right testis. Morphotintorial and biochemical analyses of bacteria obtained from microbiological culture revealed Corynebacterium sp. and Escherichia coli. Infection, hyperplasia, and abscessation of accessory sex glands caused urethral compression, resulting in an obstructive condition, similar to urolithiasis, in addition to bacteremia. Hyperplastic seminal vesiculitis, although rare, must be included among the differential diagnoses of obstructive processes in the urinary tract of sheep

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio
    • …
    corecore