214 research outputs found
Spherical collapse with dark energy
I discuss the work of Maor and Lahav [1], in which the inclusion of dark
energy into the spherical collapse formalism is reviewed. Adopting a
phenomenological approach, I consider the consequences of - a) allowing the
dark energy to cluster, and, b) including the dark energy in the virialization
process. Both of these issues affect the final state of the system in a
fundamental way. The results suggest a potentially differentiating signature
between a true cosmological constant and a dynamic form of dark energy. This
signature is unique in the sense that it does not depend on a measurement of
the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop,
19 - 24 June 2005, Peyresq, Franc
Nonlocal calculation for nonstrange dibaryons and tribaryons
We study the possible existence of nonstrange dibaryons and tribaryons by
solving the bound-state problem of the two- and three-body systems composed of
nucleons and deltas. The two-body systems are , , and
, while the three-body systems are , ,
, and . We use as input the nonlocal ,
, and potentials derived from the chiral quark cluster
model by means of the resonating group method. We compare with previous results
obtained from the local version based on the Born-Oppenheimer approximation.Comment: 19 pages. To be published in Physical Review
Chameleonic Generalized Brans--Dicke model and late-time acceleration
In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in
the framework of FRW universes. The bouncing solution and phantom crossing is
investigated for the model. Two independent cosmological tests: Cosmological
Redshift Drift (CRD) and distance modulus are applied to test the model with
the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011
Urethral obstruction due to seminal vesiculitis in a sheep - case report
ABSTRACT We report a case of urethral obstruction due to seminal vesiculitis in a Dorper sheep, with symptoms of anuria, rectal prolapse, orchitis/epididymitis, and uroperitoneum and biochemical tests indicating severe azotemia. The animal died due to advanced azotemia, and necropsy revealed kidneys with cortical and medullary necrosis, pyelonephritis of renal calyces, hydronephrosis, ruptured and necrotic bladder, and vesicular, bulbourethral, and ampoule accessory sex glands. There was prostate hyperplasia that revealed a large amount of pus in the cross section, which was also observed bilaterally in the epididymis and right testis. Morphotintorial and biochemical analyses of bacteria obtained from microbiological culture revealed Corynebacterium sp. and Escherichia coli. Infection, hyperplasia, and abscessation of accessory sex glands caused urethral compression, resulting in an obstructive condition, similar to urolithiasis, in addition to bacteremia. Hyperplastic seminal vesiculitis, although rare, must be included among the differential diagnoses of obstructive processes in the urinary tract of sheep
Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter
The Bianchi type III dark energy models with constant deceleration parameter
are investigated. The equation of state parameter is found to be time
dependent and its existing range for this model is consistent with the recent
observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy
clustering statistics. The physical aspect of the dark energy models are
discussed.Comment: 12 pages, 2 figures, Accepted version of IJT
Dark Energy from structure: a status report
The effective evolution of an inhomogeneous universe model in any theory of
gravitation may be described in terms of spatially averaged variables. In
Einstein's theory, restricting attention to scalar variables, this evolution
can be modeled by solutions of a set of Friedmann equations for an effective
volume scale factor, with matter and backreaction source terms. The latter can
be represented by an effective scalar field (`morphon field') modeling Dark
Energy.
The present work provides an overview over the Dark Energy debate in
connection with the impact of inhomogeneities, and formulates strategies for a
comprehensive quantitative evaluation of backreaction effects both in
theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to
refurnishing the standard cosmological equations, but also lay down a number of
challenges and unresolved issues in connection with their observational
interpretation.
The present status of this subject is intermediate: we have a good
qualitative understanding of backreaction effects pointing to a global
instability of the standard model of cosmology; exact solutions and
perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some
researchers, the concordance high-precision cosmology, the architecture of
current N-body simulations, as well as standard perturbative approaches may all
fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59
pages, 2 figures; matches published versio
- …