3,018 research outputs found

    Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    Get PDF
    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET

    The spectrum of the random environment and localization of noise

    Get PDF
    We consider random walk on a mildly random environment on finite transitive d- regular graphs of increasing girth. After scaling and centering, the analytic spectrum of the transition matrix converges in distribution to a Gaussian noise. An interesting phenomenon occurs at d = 2: as the limit graph changes from a regular tree to the integers, the noise becomes localized.Comment: 18 pages, 1 figur

    Properties of the Ideal Ginzburg-Landau Vortex Lattice

    Full text link
    The magnetization curves M(H) for ideal type-II superconductors and the maximum, minimum, and saddle point magnetic fields of the vortex lattice are calculated from Ginzburg-Landau theory for the entire ranges of applied magnetic fields Hc1 <= H < Hc2 or inductions 0 <= B < Hc2 and Ginzburg-Landau parameters sqrt(1/2) <= kappa <= 1000. Results for the triangular and square flux-line lattices are compared with the results of the circular cell approximation. The exact magnetic field B(x,y) and magnetization M(H, kappa) are compared with often used approximate expressions, some of which deviate considerably or have limited validity. Useful limiting expressions and analytical interpolation formulas are presented.Comment: 11 pages, 8 figure

    Factorization of Seiberg-Witten Curves with Fundamental Matter

    Full text link
    We present an explicit construction of the factorization of Seiberg-Witten curves for N=2 theory with fundamental flavors. We first rederive the exact results for the case of complete factorization, and subsequently derive new results for the case with breaking of gauge symmetry U(Nc) to U(N1)xU(N2). We also show that integrality of periods is necessary and sufficient for factorization in the case of general gauge symmetry breaking. Finally, we briefly comment on the relevance of these results for the structure of N=1 vacua.Comment: 24 pages, 2 figure

    Conductivity sum rule, implication for in-plane dynamics and c-axis response

    Full text link
    Recently observed cc-axis optical sum rule violations indicate non-Fermi liquid in-plane behavior. For coherent cc-axis coupling, the observed flat, nearly frequency independent cc-axis conductivity σ1(ω)\sigma_{1}(\omega) implies a large in-plane scattering rate Γ\Gamma around (0,π)(0,\pi) and therefore any pseudogap that might form at low frequency in the normal state will be smeared. On the other hand incoherent cc-axis coupling places no restriction on the value of Γ\Gamma and gives a more consistent picture of the observed sum rule violation which, we find in some cases, can be less than half.Comment: 3 figures. To appear in PR

    Fast Searching in Packed Strings

    Get PDF
    Given strings PP and QQ the (exact) string matching problem is to find all positions of substrings in QQ matching PP. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time. However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let mnm \leq n be the lengths PP and QQ, respectively, and let σ\sigma denote the size of the alphabet. On a standard unit-cost word-RAM with logarithmic word size we present an algorithm using time O\left(\frac{n}{\log_\sigma n} + m + \occ\right). Here \occ is the number of occurrences of PP in QQ. For m=o(n)m = o(n) this improves the O(n)O(n) bound of the Knuth-Morris-Pratt algorithm. Furthermore, if m=O(n/logσn)m = O(n/\log_\sigma n) our algorithm is optimal since any algorithm must spend at least \Omega(\frac{(n+m)\log \sigma}{\log n} + \occ) = \Omega(\frac{n}{\log_\sigma n} + \occ) time to read the input and report all occurrences. The result is obtained by a novel automaton construction based on the Knuth-Morris-Pratt algorithm combined with a new compact representation of subautomata allowing an optimal tabulation-based simulation.Comment: To appear in Journal of Discrete Algorithms. Special Issue on CPM 200

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.
    corecore