3,553 research outputs found

    The vortex dynamics of a Ginzburg-Landau system under pinning effect

    Full text link
    It is proved that the vortices are attracted by impurities or inhomogeities in the superconducting materials. The strong H^1-convergence for the corresponding Ginzburg-Landau system is also proved.Comment: 23page

    Upconversion of optical signals with multi-longitudinal-mode pump lasers

    Full text link
    Multi-longitudinal-mode lasers have been believed to be good candidates as pump sources for optical frequency conversion. However, we present a semi-classical model for frequency conversion of optical signals with a multimode pump laser, which shows that fluctuations of the instantaneous pump power limit the conversion efficiency. In an experiment, we upconverted a 1550 nm optical signal in a periodically poled lithium niobate waveguide using with a multi-longitudinal-mode laser, an observed a maximum conversion efficiency of 70%, in good agreement with our theoretical model. Compared to single-mode pumping, multimode pumping is not a suitable technique for attaining stable near-unity-efficiency frequency conversion. However, the results obtained here could find application in characterization of the spectral or temporal structure of multi-longitudinal-mode lasers.Comment: 6 pages, 4 figures, comments are welcome

    Composite Polarons in Ferromagnetic Narrow-band Metallic Manganese Oxides

    Full text link
    A new mechanism is proposed to explain the colossal magnetoresistance and related phenomena. Moving electrons accompanied by Jahn-Teller phonon and spin-wave clouds may form composite polarons in ferromagnetic narrow-band manganites. The ground-state and finite-temperature properties of such composite polarons are studied in the present paper. By using a variational method, it is shown that the energy of the system at zero temperature decreases with the formation of composite polaron; the energy spectrum and effective mass of the composite polaron at finite temperature is found to be strongly renormalized by the temperature and the magnetic field. It is suggested that the composite polaron contribute significantly to the transport and the thermodynamic properties in ferromagnetic narrow-band metallic manganese oxides.Comment: Latex, no figur

    Pairing Symmetry in Iron-Pnictide Superconductor KFe2_2As2_2

    Full text link
    The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a low-energy effective kinetic model based on the first-principles band structure calculations combined with the J1J_1-J2J_2 model for KFe2_2As2_2, the phase diagram of pairing symmetries is constructed. Putting the values of J1J_1 and J2J_2 of the J1J_1-J2J_2 model obtained by the first-principles calculations into this phase diagram, we find that the pairing symmetry for KFe2_2As2_2 is a nodal dxyd_{xy}-wave in the folded Brillouin zone with two iron atoms per unit cell. This is in good agreement with experiments observed a nodal order parameter.Comment: 5 pages, 4 figures (The pairing symmetry is dependent on choosing an effective tight-binding model. In the publication version, we adopt a ten-orbital model by using the maximally localized Wannier functions based on the first-principles band structure calculations, and give an s-wave pairing for KFe2_2As2_2

    Charge and Spin Transport in the One-dimensional Hubbard Model

    Full text link
    In this paper we study the charge and spin currents transported by the elementary excitations of the one-dimensional Hubbard model. The corresponding current spectra are obtained by both analytic methods and numerical solution of the Bethe-ansatz equations. For the case of half-filling, we find that the spin-triplet excitations carry spin but no charge, while charge η\eta-spin triplet excitations carry charge but no spin, and both spin-singlet and charge η\eta-spin-singlet excitations carry neither spin nor charge currents.Comment: 24 pages, 14 figure

    Quantum broadcast communication

    Get PDF
    Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just consider a simple broadcast communication task in quantum scenario, which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger state to realize a task that the central party broadcasts his secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver who share each of their authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, which the central party can broadcast the secret to any subset of the legal receivers

    Quasiparticle Scattering Interference in (K,Tl)FexSe2 Superconductors

    Full text link
    We model the quasiparticle interference (QPI) pattern in the recently discovered (K,Tl)Fe_xSe2 superconductors. We show in the superconducting state that, due to the absence of hole pockets at the Brillouin zone center, the quasiparticle scattering occurs around the momentum transfer q=(0,0) and (\pm \pi, \pm \pi) between electron pockets located at the zone boundary. More importantly, although both d_{x^2-y^2}-wave and s-wave pairing symmetry lead to nodeless quasiparticle excitations, distinct QPI features are predicted between both types of pairing symmetry. In the presence of a nonmagnetic impurity scattering, the QPI exhibits strongest scattering with q=(\pm \pi, \pm \pi) for the d_{x^2-y^2}-wave pairing symmetry; while the strongest scattering exhibits a ring-like structure centered around both q=(0,0) and (\pm \pi, \pm \pi) for the isotropic s-wave pairing symmetry. A unique QPI pattern has also been predicted due to a local pair-potential-type impurity scattering. The significant contrast in the QPI pattern between the d_{x^2-y^2}-wave and the isotropic s-wave pairing symmetry can be used to probe the pairing symmetry within the Fourier-transform STM technique.Comment: 4+ pages, 3 embedded eps figure

    Phase diagram of a Bose-Fermi mixture in a one-dimensional optical lattice in terms of fidelity and entanglement

    Full text link
    We study the ground-state phase diagram of a Bose-Fermi mixture loaded in a one-dimensional optical lattice by computing the ground-state fidelity and quantum entanglement. We find that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system; and the concurrence can be used to signal the transition between the density-wave phase and the Ising phase.Comment: 4 pages 3 figure
    • …
    corecore