18,337 research outputs found

    Topological Properties of Spatial Coherence Function

    Full text link
    Topology of the spatial coherence function is considered in details. The phase singularity (coherence vortices) structures of coherence function are classified by Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function.Comment: 9 page

    Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions?

    Full text link
    The light-harvesting efficiency of a photoactive molecular complex is largely determined by the properties of its electronic quantum states. Those, in turn, are influenced by molecular vibrational states of the nuclear degrees of freedom. Here, we reexamine two recently formulated concepts that a coherent vibronic coupling between molecular states would either extend the electronic coherence lifetime or enhance the amplitude of the anticorrelated vibrational mode at longer times. For this, we study a vibronically coupled dimer and calculate the nonlinear two-dimensional (2D) electronic spectra which directly reveal electronic coherence. The timescale of electronic coherence is initially extracted by measuring the anti-diagonal bandwidth of the central peak in the 2D spectrum at zero waiting time. Based on the residual analysis, we identify small-amplitude long-lived oscillations in the cross-peaks, which, however, are solely due to groundstate vibrational coherence, regardless of having resonant or off-resonant conditions. Our studies neither show an enhancement of the electronic quantum coherence nor an enhancement of the anticorrelated vibrational mode by the vibronic coupling under ambient conditions

    Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"

    Full text link
    In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van Otterlo, and Zimanyi criticized the phenomenological time-dependent Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for superconducting wires. They claimed that they developed a "microscopic" model, made qualitative improvement on my overestimate of the tunnelling barrier due to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's result on EM barrier is expected in my paper; ii), their work is also phenomenological; iii), their renormalization scheme is fundamentally flawed; iv), they underestimated the barrier for ultrathin wires; v), their comparison with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected from my work. They underestimated tunneling barrier for ultrathin wires by one order of magnitude in the exponen

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the ϕ\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    A new topological aspect of the arbitrary dimensional topological defects

    Full text link
    We present a new generalized topological current in terms of the order parameter field ϕ\vec \phi to describe the arbitrary dimensional topological defects. By virtue of the % \phi-mapping method, we show that the topological defects are generated from the zero points of the order parameter field ϕ\vec \phi, and the topological charges of these topological defects are topological quantized in terms of the Hopf indices and Brouwer degrees of ϕ\phi-mapping under the condition that the Jacobian % J(\frac \phi v)\neq 0. When J(ϕv)=0J(\frac \phi v)=0, it is shown that there exist the crucial case of branch process. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of generalized topological current and find different directions of the bifurcation. The arbitrary dimensional topological defects are found splitting or merging at the degenerate point of field function ϕ\vec \phi but the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte

    Evolution of the Chern-Simons Vortices

    Full text link
    Based on the gauge potential decomposition theory and the ϕ\phi -mapping theory, the topological inner structure of the Chern-Simons-Higgs vortex has been showed in detail. The evolution of CSH vortices is studied from the topological properties of the Higgs scalar field. The vortices are found generating or annihilating at the limit points and encountering, splitting or merging at the bifurcation points of the scalar field ϕ.\phi .Comment: 10 pages, 10 figure

    Angular Momentum Conservation Law for Randall-Sundrum Models

    Full text link
    In Randall-Sundrum models, by the use of general Noether theorem, the covariant angular momentum conservation law is obtained with the respect to the local Lorentz transformations. The angular momentum current has also superpotential and is therefore identically conserved. The space-like components JijJ_{ij} of the angular momentum for Randall-Sundrum models are zero. But the component J04J_{04} is infinite.Comment: 10 pages, no figures, accepted by Mod. Phys. Lett.

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    A scheme for demonstration of fractional statistics of anyons in an exactly solvable model

    Full text link
    We propose a scheme to demonstrate fractional statistics of anyons in an exactly solvable lattice model proposed by Kitaev that involves four-body interactions. The required many-body ground state, as well as the anyon excitations and their braiding operations, can be conveniently realized through \textit{dynamic}laser manipulation of cold atoms in an optical lattice. Due to the perfect localization of anyons in this model, we show that a quantum circuit with only six qubits is enough for demonstration of the basic braiding statistics of anyons. This opens up the immediate possibility of proof-of-principle experiments with trapped ions, photons, or nuclear magnetic resonance systems.Comment: 4 pages, 3 figure
    corecore