2,845 research outputs found
Phase transition curves for mesoscopic superconducting samples
We compute the phase transition curves for mesoscopic superconductors.
Special emphasis is given to the limiting shape of the curve when the magnetic
flux is large. We derive an asymptotic formula for the ground state of the
Schr\"odinger equation in the presence of large applied flux. The expansion is
shown to be sensitive to the smoothness of the domain. The theoretical results
are compared to recent experiments.Comment: 8 pages, 1 figur
Correlation functions in isotropic and anisotropic turbulence: the role of the symmetry group
The theory of fully developed turbulence is usually considered in an
idealized homogeneous and isotropic state. Real turbulent flows exhibit the
effects of anisotropic forcing. The analysis of correlation functions and
structure functions in isotropic and anisotropic situations is facilitated and
made rational when performed in terms of the irreducible representations of the
relevant symmetry group which is the group of all rotations SO(3). In this
paper we firstly consider the needed general theory and explain why we expect
different (universal) scaling exponents in the different sectors of the
symmetry group. We exemplify the theory context of isotropic turbulence (for
third order tensorial structure functions) and in weakly anisotropic turbulence
(for the second order structure function). The utility of the resulting
expressions for the analysis of experimental data is demonstrated in the
context of high Reynolds number measurements of turbulence in the atmosphere.Comment: 35 pages, REVTEX, 1 figure, Phys. Rev. E, submitte
The photometric properties of a vast stellar substructure in the outskirts of M33
We have surveyed sq.degrees surrounding M33 with CFHT MegaCam in the
g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our
observations are deep enough to resolve the top 4mags of the red giant branch
population in this galaxy. We have previously shown that the disk of M33 is
surrounded by a large, irregular, low-surface brightness substructure. Here, we
quantify the stellar populations and structure of this feature using the PAndAS
data. We show that the stellar populations of this feature are consistent with
an old population with dex and an interquartile range in
metallicity of dex. We construct a surface brightness map of M33 that
traces this feature to mags\,arcsec. At these low surface
brightness levels, the structure extends to projected radii of kpc from
the center of M33 in both the north-west and south-east quadrants of the
galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns
with the orientation of the HI disk warp. We calculate a lower limit to the
integrated luminosity of the structure of mags, comparable to a
bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the
total luminosity of M33. Further, we show that there is tentative evidence for
a distortion in the distribution of young stars near the edge of the HI disk
that occurs at similar azimuth to the warp in HI. The data also hint at a
low-level, extended stellar component at larger radius that may be a M33 halo
component. We revisit studies of M33 and its stellar populations in light of
these new results, and we discuss possible formation scenarios for the vast
stellar structure. Our favored model is that of the tidal disruption of M33 in
its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma
Deuteron-equivalent and phase-equivalent interactions within light nuclei
Background: Phase-equivalent transformations (PETs) are well-known in quantum
scattering and inverse scattering theory. PETs do not affect scattering phase
shifts and bound state energies of two-body system but are conventionally
supposed to modify two-body bound state observables such as the rms radius and
electromagnetic moments. Purpose: In order to preserve all bound state
observables, we propose a new particular case of PETs, a deuteron-equivalent
transformation (DET-PET), which leaves unchanged not only scattering phase
shifts and bound state (deuteron) binding energy but also the bound state wave
function. Methods: The construction of DET-PET is discussed; equations defining
the simplest DET-PETs are derived. We apply these simplest DET-PETs to the
JISP16 interaction and use the transformed interactions in
calculations of H and He binding energies in the No-core Full
Configuration (NCFC) approach based on extrapolations of the No-core Shell
Model (NCSM) basis space results to the infinite basis space. Results: We
demonstrate the DET-PET modification of the scattering wave functions and
study the DET-PET manifestation in the binding energies of H and He
nuclei and their correlation (Tjon line). Conclusions: It is shown that some
DET-PETs generate modifications of the central component while the others
modify the tensor component of the interaction. DET-PETs are able to
modify significantly the scattering wave functions and hence the off-shell
properties of the interaction. DET-PETs give rise to significant changes
in the binding energies of H (in the range of approximately 1.5 MeV) and
He (in the range of more than 9 MeV) and are able to modify the correlation
patterns of binding energies of these nuclei
Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion
We derive a product rule for gauge invariant Weyl symbols which provides a
generalization of the well-known Moyal formula to the case of non-vanishing
electromagnetic fields. Applying our result to the guiding center problem we
expand the guiding center Hamiltonian into an asymptotic power series with
respect to both Planck's constant and an adiabaticity parameter already
present in the classical theory. This expansion is used to determine the
influence of quantum mechanical effects on guiding center motion.Comment: 24 pages, RevTeX, no figures; shortened version will be published in
J.Phys.
Gravitational Ionization: A Chaotic Net in the Kepler System
The long term nonlinear dynamics of a Keplerian binary system under the
combined influences of gravitational radiation damping and external tidal
perturbations is analyzed. Gravitational radiation reaction leads the binary
system towards eventual collapse, while the external periodic perturbations
could lead to the ionization of the system via Arnold diffusion. When these two
opposing tendencies nearly balance each other, interesting chaotic behavior
occurs that is briefly studied in this paper. It is possible to show that
periodic orbits can exist in this system for sufficiently small damping.
Moreover, we employ the method of averaging to investigate the phenomenon of
capture into resonance.Comment: REVTEX Style, Submitte
Time evolution and observables in constrained systems
The discussion is limited to first-class parametrized systems, where the
definition of time evolution and observables is not trivial, and to finite
dimensional systems in order that technicalities do not obscure the conceptual
framework. The existence of reasonable true, or physical, degrees of freedom is
rigorously defined and called {\em local reducibility}. A proof is given that
any locally reducible system admits a complete set of perennials. For locally
reducible systems, the most general construction of time evolution in the
Schroedinger and Heisenberg form that uses only geometry of the phase space is
described. The time shifts are not required to be 1symmetries. A relation
between perennials and observables of the Schroedinger or Heisenberg type
results: such observables can be identified with certain classes of perennials
and the structure of the classes depends on the time evolution. The time
evolution between two non-global transversal surfaces is studied. The problem
is posed and solved within the framework of the ordinary quantum mechanics. The
resulting non-unitarity is different from that known in the field theory
(Hawking effect): state norms need not be preserved so that the system can be
lost during the evolution of this kind.Comment: 31 pages, Latex fil
Non-abelian Harmonic Oscillators and Chiral Theories
We show that a large class of physical theories which has been under
intensive investigation recently, share the same geometric features in their
Hamiltonian formulation. These dynamical systems range from harmonic
oscillations to WZW-like models and to the KdV dynamics on . To the
same class belong also the Hamiltonian systems on groups of maps.
The common feature of these models are the 'chiral' equations of motion
allowing for so-called chiral decomposition of the phase space.Comment: 1
Hyperspherical Harmonics, Separation of Variables and the Bethe Ansatz
The relation between solutions to Helmholtz's equation on the sphere
and the [{\gr sl}(2)]^n Gaudin spin chain is clarified. The joint
eigenfuctions of the Laplacian and a complete set of commuting second order
operators suggested by the --matrix approach to integrable systems, based on
the loop algebra \wt{sl}(2)_R, are found in terms of homogeneous polynomials
in the ambient space. The relation of this method of determining a basis of
harmonic functions on to the Bethe ansatz approach to integrable
systems is explained.Comment: 14 pgs, Plain Tex, preprint CRM--2174 (May, 1994
- …