57 research outputs found
Investigate the effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors
The effect of anisotropic order parameter to specific heat of anisotropic
two-band superconductors in BCS weak-coupling limit are investigated. An
analytical specific heat jump and the numerical specific heat are shown by
using anisotropic order parameters, and the electron-phonon interaction and
non-electron-phonon interaction. The two model of anisotropic order parameters
are used for numerical calculation that we find little effect to the numerical
results . The specific heat jump of, and superconductors can fit well with the
both of them. By comparing to experimental data overall range of temperature,
the best fit is ,, and superconductors, respectively.Comment: 10 pages, 3 fingure
Dengue Incidence in Urban and Rural Cambodia: Results from Population-Based Active Fever Surveillance, 2006–2008
Dengue is a major public health problem in South-East Asia. Several dengue vaccine candidates are now in late-stage development and are being evaluated in clinical trials. Accurate estimates of true dengue disease burden will become an important factor in the public-health decision-making process for endemic countries once safe and effective vaccines become available. However, estimates of the true disease incidence are difficult to make, because national surveillance systems suffer from disease under-recognition and reporting. Dengue is mainly reported among children, and in some countries, such as Cambodia, the national case definition only includes hospitalized children. This study used active, community-based surveillance of febrile illness coupled with laboratory testing for DENV infection to identify cases of dengue fever in rural and urban populations. We found a high burden of dengue in young children and late adolescents in both rural and urban communities at a magnitude greater than previously described. The study also confirmed the previously observed focal nature of dengue virus transmission
Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand
Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays, but the possible clinical implications of this remain poorly understood. Interactions between these flaviviruses are potentially important for public health because wild-type JEV continues to co-circulate with DENV in Southeast Asia, the area with the highest burden of DENV illness, and JEV vaccination coverage in this region is high. In this study, we examined how preexisting JEV neutralizing antibodies (NAbs) influenced the clinical severity of subsequent DENV infection using data from a prospective school-based cohort study in Thailand that captured a wide range of clinical severities, including asymptomatic, non-hospitalized, and hospitalized DENV infections. We found that the prior existence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic DENV infection. This association was most notable in DENV-naives, in whom the presence of JEV NAbs was also associated with an illness of longer duration. These findings suggest that the issue of heterologous flavivirus immunity and DENV infection merits renewed attention and interest and that DENV vaccine developers might incorporate detailed assessments of preexisting immunity to non-DENV flaviviruses and histories of vaccination against non-DENV flaviviruses in evaluating DENV vaccine safety and efficacy
Dengue Virus Activates Polyreactive, Natural IgG B Cells after Primary and Secondary Infection
BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development
Dengue: a continuing global threat.
Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future
Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy
Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm3/h, to give 3–24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10–20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer–Dinegar model of NPs’ formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method
- …