3,161 research outputs found

    Thermal modeling of a metallic thermal protection tile for entry vehicles

    Get PDF
    The thermal Energy Flow Simulation (TEFS) computer program was developed to simulate transient heat transfer through composite solids and predict interfacial temperatures. The program and its usage are described. A simulation of the thermal response of a new thermal protection tile design for the Space Shuttle Orbiter is presented and graphically compared with actual data. An example is also provided which shows the program's usage as a design tool for theoretical models

    Green's Functions from Quantum Cluster Algorithms

    Full text link
    We show that cluster algorithms for quantum models have a meaning independent of the basis chosen to construct them. Using this idea, we propose a new method for measuring with little effort a whole class of Green's functions, once a cluster algorithm for the partition function has been constructed. To explain the idea, we consider the quantum XY model and compute its two point Green's function in various ways, showing that all of them are equivalent. We also provide numerical evidence confirming the analytic arguments. Similar techniques are applicable to other models. In particular, in the recently constructed quantum link models, the new technique allows us to construct improved estimators for Wilson loops and may lead to a very precise determination of the glueball spectrum.Comment: 15 pages, LaTeX, with four figures. Added preprint numbe

    The Freezing of Random RNA

    Full text link
    We study secondary structures of random RNA molecules by means of a renormalized field theory based on an expansion in the sequence disorder. We show that there is a continuous phase transition from a molten phase at higher temperatures to a low-temperature glass phase. The primary freezing occurs above the critical temperature, with local islands of stable folds forming within the molten phase. The size of these islands defines the correlation length of the transition. Our results include critical exponents at the transition and in the glass phase.Comment: 4 pages, 8 figures. v2: presentation improve

    Public Policy and the Non-Secular: How Non-Profit Organizations Preserve Inner City Historic Sacred Places

    Get PDF
    Historic sacred places represent a pattern of American culture. The sheer abundance of churches, temples and synagogues across the country demonstrate the presence of religious freedom, and the public statement conveyed by sacred places in their craftsmanship, architectural styles and strategic locations in residential neighborhoods. The many ways a community relates to an historic sacred place are representative of how people value cultural resources and what impact these resources can have on community revitalization. When a strong partnership exists between a congregation and community members (whether congregant or not) the outcome is more beneficial to the preservation of a sacred place. This thesis proposes that a healthy partnership can be achieved by non-profit organizations collaborating with urban congregations, to effectively impact their communities and preserve their historic sacred places. The three case studies present exemplary partnerships between congregations and nonprofit organizations in Chicago, Philadelphia and Detroit, where historic congregations are impacting the surrounding community by the preservation of their urban religious properties

    A Real-Life Drama

    Get PDF

    Monte Carlo Study of Correlations in Quantum Spin Chains at Non-Zero Temperature

    Full text link
    Antiferromagnetic Heisenberg spin chains with various spin values (S=1/2,1,3/2,2,5/2S=1/2,1,3/2,2,5/2) are studied numerically with the quantum Monte Carlo method. Effective spin SS chains are realized by ferromagnetically coupling n=2Sn=2S antiferromagnetic spin chains with S=1/2S=1/2. The temperature dependence of the uniform susceptibility, the staggered susceptibility, and the static structure factor peak intensity are computed down to very low temperatures, T/J≈0.01T/J \approx 0.01. The correlation length at each temperature is deduced from numerical measurements of the instantaneous spin-spin correlation function. At high temperatures, very good agreement with exact results for the classical spin chain is obtained independent of the value of SS. For SS=2 chains which have a gap Δ\Delta, the correlation length and the uniform susceptibility in the temperature range Δ<T<J\Delta < T < J are well predicted by a semi-classical theory due to Damle and Sachdev.Comment: LaTeX EPJ macr

    Quantum Link Models with Many Rishon Flavors and with Many Colors

    Get PDF
    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.Comment: Lattice2001(theorydevelop), poster by O. Baer and talk by B. Schlittgen, 6 page

    Description of an aeronautical geometry conversion package: Wave-drag to Langley Wireframe Geometry Standard (LaWGS) to Supersonic Implicit Marching Potential (SIMP)

    Get PDF
    Documented is an aeronautical geometry conversion package which translates wave-drag geometry into the Langley Wireframe Geometry Standard (LaWGS) format and then into a format which is used by the Supersonic Implicit Marching Potential (SIMP) program. The programs described were developed by Computer Sciences Corporation for the Advanced Vehicles Division/Advanced Concepts Branch at NASA Langley Research Center. Included also are the input and output from a benchmark test case

    Progress on Perfect Lattice Actions for QCD

    Get PDF
    We describe a number of aspects in our attempt to construct an approximately perfect lattice action for QCD. Free quarks are made optimally local on the whole renormalized trajectory and their couplings are then truncated by imposing 3-periodicity. The spectra of these short ranged fermions are excellent approximations to continuum spectra. The same is true for free gluons. We evaluate the corresponding perfect quark-gluon vertex function, identifying in particular the ``perfect clover term''. First simulations for heavy quarks show that the mass is strongly renormalized, but again the renormalized theory agrees very well with continuum physics. Furthermore we describe the multigrid formulation for the non-perturbative perfect action and we present the concept of an exactly (quantum) perfect topological charge on the lattice.Comment: 14 pages, 17 figures, Talk presented at LATTICE96(improvement
    • 

    corecore