287 research outputs found

    Equality of bond percolation critical exponents for pairs of dual lattices

    Full text link
    For a certain class of two-dimensional lattices, lattice-dual pairs are shown to have the same bond percolation critical exponents. A computational proof is given for the martini lattice and its dual to illustrate the method. The result is generalized to a class of lattices that allows the equality of bond percolation critical exponents for lattice-dual pairs to be concluded without performing the computations. The proof uses the substitution method, which involves stochastic ordering of probability measures on partially ordered sets. As a consequence, there is an infinite collection of infinite sets of two-dimensional lattices, such that all lattices in a set have the same critical exponents.Comment: 10 pages, 7 figure

    Routing and Staffing when Servers are Strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by the system's routing and staffing policies. This observation has consequences when modeling service system performance, and our objective is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate in order to maximize a trade-off between an "effort cost", which captures the idea that servers exert more effort when working at a faster rate, and a "value of idleness", which assumes that servers value having idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time. We find that the system must operate in a quality-driven regime, in which servers have idle time, in order for an equilibrium to exist, which implies that the staffing must have a first-order term that strictly exceeds that of the common square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance.Comment: First submitted for journal publication in 2014; accepted for publication in Operations Research in 2016. Presented in select conferences throughout 201

    Exact bond percolation thresholds in two dimensions

    Full text link
    Recent work in percolation has led to exact solutions for the site and bond critical thresholds of many new lattices. Here we show how these results can be extended to other classes of graphs, significantly increasing the number and variety of solved problems. Any graph that can be decomposed into a certain arrangement of triangles, which we call self-dual, gives a class of lattices whose percolation thresholds can be found exactly by a recently introduced triangle-triangle transformation. We use this method to generalize Wierman's solution of the bow-tie lattice to yield several new solutions. We also give another example of a self-dual arrangement of triangles that leads to a further class of solvable problems. There are certainly many more such classes.Comment: Accepted for publication in J. Phys

    Rigorous confidence intervals for critical probabilities

    Full text link
    We use the method of Balister, Bollobas and Walters to give rigorous 99.9999% confidence intervals for the critical probabilities for site and bond percolation on the 11 Archimedean lattices. In our computer calculations, the emphasis is on simplicity and ease of verification, rather than obtaining the best possible results. Nevertheless, we obtain intervals of width at most 0.0005 in all cases

    On the impact of heterogeneity and back-end scheduling in load balancing designs

    Get PDF
    Load balancing is a common approach for task assignment in distributed architectures. In this paper, we show that the degree of inefficiency in load balancing designs is highly dependent on the scheduling discipline used at each of the backend servers. Traditionally, the back-end scheduler can be modeled as Processor Sharing (PS), in which case the degree of inefficiency grows linearly with the number of servers. However, if the back-end scheduler is changed to Shortest Remaining Processing Time (SRPT), the degree of inefficiency can be independent of the number of servers, instead depending only on the heterogeneity of the speeds of the servers. Further, switching the back-end scheduler to SRPT can provide significant improvements in the overall mean response time of the system as long as the heterogeneity of the server speeds is small

    Exact Site Percolation Thresholds Using the Site-to-Bond and Star-Triangle Transformations

    Full text link
    I construct a two-dimensional lattice on which the inhomogeneous site percolation threshold is exactly calculable and use this result to find two more lattices on which the site thresholds can be determined. The primary lattice studied here, the ``martini lattice'', is a hexagonal lattice with every second site transformed into a triangle. The site threshold of this lattice is found to be 0.764826...0.764826..., while the others have 0.618034...0.618034... and 1/21/\sqrt{2}. This last solution suggests a possible approach to establishing the bound for the hexagonal site threshold, pc<1/2p_c<1/\sqrt{2}. To derive these results, I solve a correlated bond problem on the hexagonal lattice by use of the star-triangle transformation and then, by a particular choice of correlations, solve the site problem on the martini lattice.Comment: 12 pages, 10 figures. Submitted to Physical Review

    Predictions of bond percolation thresholds for the kagom\'e and Archimedean (3,122)(3,12^2) lattices

    Full text link
    Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2) bond problems, and the other gives estimates of pcp_c for the homogeneous kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure

    Routing and staffing when servers are strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by these policies. This observation has consequences when modeling service system performance, and our objective in this paper is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate, in which there is a trade-off between an "effort cost" and a "value of idleness": faster service rates require more exertion of effort, but also lead to more idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time (such as the Longest Idle Server First policy). This allows us to (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. We find that an asymptotically optimal staffing policy staffs strictly more than the common square-root staffing policy. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance

    The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices

    Full text link
    We give a conditional derivation of the inhomogeneous critical percolation manifold of the bow-tie lattice with five different probabilities, a problem that does not appear at first to fall into any known solvable class. Although our argument is mathematically rigorous only on a region of the manifold, we conjecture that the formula is correct over its entire domain, and we provide a non-rigorous argument for this that employs the negative probability regime of the triangular lattice critical surface. We discuss how the rigorous portion of our result substantially broadens the range of lattices in the solvable class to include certain inhomogeneous and asymmetric bow-tie lattices, and that, if it could be put on a firm foundation, the negative probability portion of our method would extend this class to many further systems, including F Y Wu’s checkerboard formula for the square lattice. We conclude by showing that this latter problem can in fact be proved using a recent result of Grimmett and Manolescu for isoradial graphs, lending strong evidence in favor of our other conjectured results. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98528/1/1751-8121_45_49_494005.pd
    • …
    corecore