57 research outputs found

    Oxygen ion energization by waves in the high altitude cusp and mantle

    Get PDF
    We present a comparative study of low frequency electric field spectral densities and temperatures observed by the Cluster spacecraft in the high altitude cusp/mantle region. We compare the relation between the O+ temperature and wave intensity at the oxygen gyrofrequency at each measurement point and find a clear correlation. The trend of the correlation agrees with the predictions by both an asymptotic mean-particle theory and a test-particle approach. The perpendicular to parallel temperature ratio is also consistent with the predictions of the asymptotic mean-particle theory. At times the perpendicular temperature is significantly higher than predicted by the models. A simple study of the evolution of the particle distributions (conics) at these altitudes indicates that enhanced perpendicular temperatures would be observed over many RE after heating ceases. Therefore, sporadic intense heating is the likely explanation for cases with high temperature and comparably low wave activity. We observe waves of sufficient amplitude to explain the highest observed temperatures, while the theory in general overestimates the temperature associated with the highest observed wave activity, indicating that such high wave activity is very sporadic

    O+ heating associated with strong activity in the high altitude cusp and mantle

    Get PDF
    We use the Cluster spacecraft to study three events with intense waves and energetic oxygen ions (O+) in the high altitude cusp and mantle. The ion energies considered are of the order 1000 eV and higher, observed above an altitude of 8 earth radii together with high wave power at the O+ gyrofrequency. We show that heating by waves can explain the observed high perpendicular energy of O+ ions, using a simple gyroresonance model and 25–45% of the observed wave spectral density at the gyrofrequency. This is in contrast to a recently published study where the wave intensity was too low to explain the observed high altitude ion energies. Long lasting cases (>10 min) of high perpendicular-to-parallel temperature ratios are sometimes associated with low wave activity, suggesting that high perpendicular-to-parallel temperature ratio is not a good indicator of local heating. Using multiple spacecraft, we show that the regions of enhanced wave activity are at least one order of magnitude larger than the gyroradius of the heated ions

    Statistical evidence for O<sup>+</sup> energization and outflow caused by wave-particle interaction in the high altitude cusp and mantle

    No full text
    We present a statistical study of the low (&lt;1 Hz) frequency electric and magnetic field spectral densities observed by Cluster spacecraft in the high altitude cusp and mantle region. At the O+ gyrofrequency (0.02–0.5 Hz) for this region the electric field spectral density is on average 0.2–2.2 (mV m−1)2 Hz−1, implying that resonant heating at the gyrofrequency can be intense enough to explain the observed O+ energies of 20–1400 eV. The relation between the electric and magnetic field spectral densities results in a large span of phase velocities, from a few hundred km s−1 up to a few thousand km s−1. In spite of the large span of phase velocity, the ratio between the calculated local AlfvĂ©n velocity and the estimated phase velocity is close to unity. We provide average values of a coefficient describing diffusion in ion velocity space at different altitudes, which can be used in studies of ion energization and outflow. The observed average waves can explain the average O+ energies measured in the high altitude (8–15 RE) cusp/mantle region of the terrestrial magnetosphere according to our test particle calculations
    • 

    corecore