2,364 research outputs found

    Light Sheets and the Covariant Entropy Conjecture

    Get PDF
    We examine the holography bound suggested by Bousso in his covariant entropy conjecture, and argue that it is violated because his notion of light sheet is too generous. We suggest its replacement by a weaker bound.Comment: 5 pages, to appear in Classical and Quantum Gravit

    Black Hole Evaporation without Information Loss

    Full text link
    An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into "hard" particles and "soft" particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the SS-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.Comment: 35 pages (including Figures); TEX, 3 figures in postscrip

    Hawking Radiation from Feynman Diagrams

    Get PDF
    The aim of this letter is to clarify the relationships between Hawking radiation and the scattering of light by matter falling into a black hole. To this end we analyze the S-matrix elements of a model composed of a massive infalling particle (described by a quantized field) and the radiation field. These fields are coupled by current-current interactions and propagate in the Schwarzschild geometry. As long as the photons energy is much smaller than the mass of the infalling particle, one recovers Hawking radiation since our S-matrix elements identically reproduce the Bogoliubov coefficients obtained by treating the trajectory of the infalling particle classically. But after a brief period, the energy of the `partners' of Hawking photons reaches this mass and the production of thermal photons through these interactions stops. The implications of this result are discussed.Comment: 12 pages, revtex, no figure

    Quantum metric fluctuations and Hawking radiation

    Get PDF
    In this Letter we study the gravitational interactions between outgoing configurations giving rise to Hawking radiation and in-falling configurations. When the latter are in their ground state, the near horizon interactions lead to collective effects which express themselves as metric fluctuations and which induce dissipation, as in Brownian motion. This dissipation prevents the appearance of trans-Planckian frequencies and leads to a description of Hawking radiation which is very similar to that obtained from sound propagation in condensed matter models.Comment: 4 pages, revte

    First Order Corrections to the Unruh Effect

    Get PDF
    First order corrections to the Unruh effect are calculated from a model of an accelerated particle detector of finite mass. We show that quantum smearing of the trajectory and large recoil essentially do not modify the Unruh effect. Nevertheless, we find corrections to the thermal distribution and to the Unruh temperature. In a certain limit, when the distribution at equilibrium remains exactly thermal, the corrected temperature is found to be T=TU(1TU/M)T = T_U( 1 - T_U/M), where TUT_U is the Unruh temperature. We estimate the consequent corrections to the Hawking temperature and the black hole entropy, and comment on the relationship to the problem of trans-planckian frequencies.Comment: 23 pages, LaTe

    b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity

    Full text link
    At tree-level Higgs production in association with a b-quark pair proceeds through the small Yukawa bottom coupling in the Standard Model. Even in the limit where this coupling vanishes, electroweak one-loop effects, through the top-Higgs Yukawa coupling in particular, can still trigger this reaction. This contribution is small for Higgs masses around 120GeV but it quickly picks up for higher Higgs masses especially because the one-loop amplitude develops a leading Landau singularity and new thresholds open up. These effects can be viewed as the production of a pair of top quarks which rescatter to give rise to Higgs production through WW fusion. We study the leading Landau singularity in detail. Since this singularity is not integrable when the one-loop amplitude is squared, we regulate the cross section by taking into account the width of the internal top and W particles. This requires that we extend the usual box one-loop function to the case of imaginary masses. We show how this can be implemented analytically in our case. We study in some detail the cross section at the LHC as a function of the Higgs mass and show how some distributions can be drastically affected compared to the tree-level result.Comment: 48 pages, 20 figures. Phys.Rev.D accepted version. Conclusions unchanged, minor changes and references adde

    Hawking Radiation Without Transplanckian Frequencies

    Get PDF
    In a recent work, Unruh showed that Hawking radiation is unaffected by a truncation of free field theory at the Planck scale. His analysis was performed numerically and based on a hydrodynamical model. In this work, by analytical methods, the mathematical and physical origin of Unruh's result is revealed. An alternative truncation scheme which may be more appropriate for black hole physics is proposed and analyzed. In both schemes the thermal Hawking radiation remains unaffected even though transplanckian energies no longer appear. The universality of this result is explained by working in momentum space. In that representation, in the presence of a horizon, the d'Alembertian equation becomes a singular first order equation. In addition, the boundary conditions corresponding to vacuum before the black hole formed are that the in--modes contain positive momenta only. Both properties remain valid when the spectrum is truncated and they suffice to obtain Hawking radiation.Comment: 27 pages, latex, includs 5 postscript figures, encoded using uufile

    A String Approximation for Cooper Pair in High-Tc_{\bf c} superconductivity

    Full text link
    It is assumed that in some sense the High-Tc_c superconductivity is similar to the quantum chromodynamics (QCD). This means that the phonons in High-Tc_c superconductor have the strong interaction between themselves like to gluons in the QCD. At the experimental level this means that in High-Tc_c superconductor exists the nonlinear sound waves. It is possible that the existence of the strong phonon-phonon interaction leads to the confinement of phonons into a phonon tube (PT) stretched between two Cooper electrons like a hypothesized flux tube between quark and antiquark in the QCD. The flux tube in the QCD brings to a very strong interaction between quark-antiquark, the similar situation can be in the High-Tc_c superconductor: the presence of the PT can essentially increase the binding energy for the Cooper pair. In the first rough approximation the PT can be approximated as a nonrelativistic string with Cooper electrons at the ends. The BCS theory with such potential term is considered. It is shown that Green's function method in the superconductivity theory is a realization of discussed Heisenberg idea proposed by him for the quantization of nonlinear spinor field. A possible experimental testing for the string approximation of the Cooper pair is offered.Comment: Essential changes: (a) the section is added in which it is shown that Green's function method in the superconductivity theory is a realization of discussed Heisenberg quantization method; (b) Veneziano amplitude is discussed as an approximation for the 4-point Green's function in High-T_c; (c) it is shown that Eq.(53) has more natural solution on the layer rather than on 3 dimensional spac
    corecore