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Abstract In a recent work, Unruh showed that Hawking radiation is un-

a�ected by a truncation of free �eld theory at the Planck scale. His analysis

was performed numerically and based on a hydrodynamical model. In this

work, by analytical methods, the mathematical and physical origin of Un-

ruh's result is revealed. An alternative truncation scheme which may be more

appropriate for black hole physics is proposed and analyzed. In both schemes

the thermal Hawking radiation remains una�ected even though transplanck-

ian energies no longer appear. The universality of this result is explained

by working in momentum space. In that representation, in the presence of

a horizon, the d'Alembertian equation becomes a singular �rst order equa-

tion. In addition, the boundary conditions corresponding to vacuum before

the black hole formed are that the in{modes contain positive momenta only.

Both properties remain valid when the spectrum is truncated and they su�ce
to obtain Hawking radiation.

2



1 Introduction

The theory of black hole evaporation [1] is sore beset with two unsolved

dilemmas:

1) The transplanckian issue [2][3]: when deriving Hawking radiation in the

usual framework of free �eld theory, one calls upon vacuum 
uctuations

at I� [4][5] whose energies are O(eM
2

=M). These propagate as such up

to a Planckian distance of the horizon where there energy is redshifted

down to O(1) and then further down to a typical frequency of O(M�1)

upon reaching I+. Since gravitational interactions become strong at

the Planckian scale free �eld theory is at best dubious.

2) The unitary issue [6]: in the semi-classical theory of back reaction, both
the matter which is the source of gravity (the star), and the \partners"
to the emitted Hawking photons fall into the singularity, giving rise to
a density matrix description of the radiation, thus, in the last analysis,

to a non-unitary description of the evolution. Can one incorporate such
a quandary into quantum mechanics?

Both will require a deeper knowledge of how gravity reacts to Hawking emis-

sion in order to be resolved. But perhaps at a more preliminary stage progress
may be made by introducing an e�ective theory which one guesses incorpo-
rates some of the features which might emerge from the fundamental theory.
Such is the nature of a recent interesting contribution of W. Unruh [7], who
addressed himself to the taming of the transplanckian monster. The present

paper, inspired by Unruh's work, contains an analysis as well as a general-
ization of the taming mechanism.

Unruh's work is based on an analogy between the hydrodynamic equations
of motion of sound waves in a moving 
uid and those that governs s-wave
emission of a massless scalar �eld from an incipient Schwarzschild black hole

in free �eld theory. Thus one is led to predict the production of a thermal

ux of phonons as the 
uid passes from sonic to supersonic 
ow [8]. Through

numerical computation he subsequently showed [7] that a truncation of the

spectrum of sound -using a rather natural algorithm- in no way a�ected the
thermal emission of Hawking phonons in the circumstances that this emission
occurred in the untruncated theory. Carrying this lesson over to the black

hole situation, the implication is that tinkering with the transplanckian part
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of the photon spectrum will leave the thermal emission una�ected. We shall

here follow up on Unruh's tinkering, �rst by introducing a truncation scheme

which we believe to be more appropriate to the black hole situation, and then

supply the mathematical rationale for the resistance of Hawking's result to

such mutilation. Throughout we have preserved the linearity of the �eld

equations. Whether non linear e�ects preserve Hawking radiation remains a

moot point.

The paper is organized in seven parts. Section 2 contains a brief re-

view of Unruh's considerations. In preparation for our analysis we present in

Section 3 a variant of the technique of Damour and Ru�ni [9], using momen-

tum space considerations. This technique provides for a simple and elegant

characterization of initial conditions which then rapidly leads to the under-

standing which we seek. In Section 4, the photon spectrum is truncated in
this approach. It follows immediately from the formalism that tinkering with
the transplanckian part of the spectrum does not a�ect the Hawking thermal
emission. Section 5 incorporates the Damour-Ru�ni technique into the Un-

ruh hydrodynamic truncated model. Using similar reasoning as in Section
4, the usual thermal emission is once more recovered. Section 6 contains a
comparison of the wave packet trajectories in the two cases that have been
analyzed so as to draw a physical picture of the production mechanisms. Fi-
nally in Section 7 we speculate on the physics behind our phenomenological
truncation procedure. Some interpretation in terms of quantum gravity is

hazarded. The result of our analysis can be viewed as one of disappointment.
Hawking radiation does not seems to be, in itself, an open door that leads
to quantum gravity. Rather, it provokes thought in that direction, without
o�ering, at least in a direct way, an orientation for the solutions.

2 Unruh's Hydrodynamic Model

The equation that governs the propagation of sound (amplitude � �) in a
perfect 
uid in 1 + 1 dimensions which 
ows with a stationary background
velocity �eld V (�) is

[(@� + @�V (�)) (@� + V (�)@�)� @2� ]� = 0 : (1)

This equation can be rewritten in d'Alembertian form � = 0 with metric
g00 = 1; g01 = g10 = V; g11 = �1 + V 2. It is readily diagonalized by the
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transformation dt = d� + V d�=(1 � V 2) ; d� = dr to read

� = [(1� V 2)�1@2t � @r(1� V 2)@r] � = 0 : (2)

In this form one recognizes the s-wave part of constructed from the

Schwarzschild metric with the identi�cations: t; r = Schwarzschild time and

radial coordinate respectively; V 2 = 2M=r. The horizon is at jV j = 1. Thus

a 
uid, whose 
ow rate approaches V = �1, will emit a thermal distribution

of phonons whose temperature is given by (1=2�)dV=drjV =�1. At this point

we simply use the form given by eq. (1) to motivate, with Unruh [7], the

truncation procedure used for this model.

In the rest frame (V = 0), the spectrum of sound determined from eq.

(1) is ! = jkj. But since the 
uid has atomic structure, the spectrum has the

property ! = jkj when k < k0 and ! ! !0 for k >> k0. For example ! = k0
tanh (k=k0) might be expected to approximate the spectrum. In general for
! = F (k), we are then led to modify eq. (1) to

[(�i@� � i@�V ) (�i@� � V i@�)� F 2 (�i@�)]� = 0 : (3)

This equation has been the starting point of Unruh's numerical compu-
tations. Propagating backwards in time an outgoing wave packet centered
about a given negative frequency, he determines the Bogoljubov coe�cients
by decomposing the packet at early times into its positive and negative fre-
quency components. Setting up a vacuum state at early times (See Section

5), the � term in the Bogoljubov transformation (i.e. the weight of the posi-
tive frequency part at early times of a negative frequency mode at late times)
encodes the presence of outgoing phonons. This latter conforms to the ex-
istence of the outgoing thermal Hawking 
ux - quite independently of the
truncation function, F .

An amusing aside is provided by Landau's theory of super
uid critical

velocity, Vs. Were vortices and rotons absent, the approach to critical super-

uid 
ow would be accompanied by a thermal shower of Hawking phonons.

3 The Damour - Ru�ni Method

To explain and generalize Unruh's result we shall use the Damour-Ru�ni
technique [9], using a variant based on momentum space introduced in ref.
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[10]. It is especially convenient for our present purpose because the wave

equation near the horizon and the boundary conditions de�ning in-modes

take a particularly simple form.

Equation (2) is valid outside a collapsing spherical star. First we trans-

form it through use of the advanced Eddington-Finkelstein system, v and r,

where v = t+ r�; r� = r + 2M`n[(r � 2M)=2M ] to give

 = �[@r(1� 2M=r)@r + 2@v@r] (v; r) = 0 (4)

The solutions,  , are connected smoothly to those which are inside the star.

Since the details of the star's trajectory are irrelevant in the interesting

asymptotic region where the star's surface approaches the horizon (r = 2M),

we shall for simplicity of presentation take a very simple model: the star is

de�ned by a thin shell radially falling inward with the speed of light. We
choose its trajectory to be v = vst = 0 where st labels the star's surface.

Inside the star, for v < 0, the geometry is 
at and described by the metric
ds2 = dv2� 2dvdr ( In terms of usual Minkowski time T one has v = T + r):

In this coordinate system waves obey

 = �@r(@r + 2@v) = 0 (5)

The usual Minkowski modes inside the star hereafter called in-modes, are

�
in(v)
� (v) = e�i�v=

p
4�� ; (6)

�
in(u)
� (v; r) = e�i�(v�2r)=

p
4�� : (7)

The u-sector of the �eld operator is �̂ =
R1
0 d�

�
a��

in(u)
� + a

y
��

in(u)�
�

�
i.e. a

superposition of in-modes given by eq. (7) inside the star. The Heisenberg
state is the vacuum state j0ini which is annihilated by the destruction op-

erators a�, i.e. there are no quanta inside the star. For a full description

one should consider v-modes �
(v)
� as well. But these do not encode particle

creation and will not be considered here. Henceforth we drop the label (u).

(To be complete we also point out that in order to describe the s-wave sector

of a 3 + 1 dimensional theory one should impose the additional boundary
condition that the modes vanish at r = 0. This complicates the notations

without modifying the result and will not be taken into account.)
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Hawking radiation is encoded in the history of the outgoing modes �in� as

they propagate through the star into the space exterior to it. In particular we

shall display their form outside the star both near and far from the horizon.

In the �rst instance, the equation that governs their behavior is

� @x[(x=2M)@x + 2@v] (x; v) = 0 (8)

where x � r � 2M . This equation holds in the domain jx!j << 1 where !

is the eigenvalue of i@v. Indeed the phase of the exact solution of eq. (4)

e�i!ve�i2!(x+2M lnx) and the phase of the solution of eq. (8) e�i!ve�i!4M lnx

di�er by O(1) when jx!j = O(1). Henceforth we shall consider only typical

! = O(M�1) which implies that x < M .

From eq. (6), the v-modes (irrelevant for production) remain of the form

e�i!v=
p
4�!, whereas the u-modes are given by the linear combination

F!(x; v) =
e�i!vp
4�!

[�(x)Ax4Mi! + �(�x)Bjxj4Mi!] (9)

Standard Klein Gordon normalization prescribes jAj2 � jBj2 = 1.
Far from the horizon (x� 2M), the wave equation reduces to

� @x (@x + 2@v) = 0 (10)

and the u-modes  out
! associated to asymptotic quanta on I+ are equal to

 out
! = e�i!(v�2r)=

p
4�!. Since the exact solutions of eq. (4) which connects

to this asymptotic form is  out
! = e�i!(v�2r�)=

p
4�!, the out-modes near the

horizon are given by A = 1; B = 0 in eq. (9):

 out
! =

1p
4�!

e�i!v�(x)x4Mi! : (11)

As the crux of our analysis lies in a careful formulation of the matching
conditions at the star's surface which de�ne the modes outside in terms of

the modes inside the star we now go into this matter in some detail. In order
to determine the out-particles content of the in-vacuum, it is propitious to

compute the Fourier transform of the modes at the surface of the star (v = 0).
The matching conditions are then implemented in simple and elegant fashion.

The Fourier transform of eq. (8) is

[p@p + 4Mi! + 1] ~F!(p) = 0 (12)
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whence

~F!(p) =

p
Mp
2�

1

p
[Cp�4Mi!�(p) +Djpj�4Mi!�(�p)] : (13)

The domain of validity of eqs. 12) and 13) is jpj � M�1 (for typical ! =

O(M�1)).

The Fourier transform of the Minkowski modes eq. (7) are proportional

to �(p� 2�), and we recall that positive norm modes have � > 0.

The object of the exercise is to use continuity to change the basis from

modes inside the star (� ~�in� (p)) to those outside the star which for large

p are of the from ~F!(p). Since the former set have p > 0 (since � > 0),

continuity prescribes that p > 0 is valid for the latter set as well. In this way

one establishes that an equivalent set of in modes is found from Eq. (13) with
D = 0 and C = 1 (this set was obtained independently from Damour-Ru�ni,
but by working in Kruskal coordinates by Unruh [11] and Hawking [6]). We
call this bases ~ in

! (p)

~ in
! (p) =

p
Mp
2�
�(p)p�4Mi!�1 : (14)

This gives ~ in
! (p) for su�ciently large p (e.g. p � M�1). Thus for these

values of p one �nds that the expansion coe�cients �!� which give ~ in
! (p) in

terms of ~�in� (p) are (M=8�2�)1=2(2�)�4Mi!. For smaller values of p which are
relevant for the construction of packets which cross the surface of the star
at large values of x, as we have stated above, ~ in

! (p) and ~�in� (p) coincide. In
this case �!� ! �(! � �).

To see explicitly that only the large values of p are relevant for packets
which reach I+ at late times, one builds a wave packet with the modes eq.
(14):

~'in!0;u0(v; p) =
Z
d! ei!u0

e�(!�!0)
2=2�2

(2�)1=4�1=2
e�i!v ~ in

! (p) (15)

The phase ei!u0 centers the wave packet on the light ray v�2r� = u0 and the
gaussian e�(!�!0)

2=2�2 centers the frequency around !0. Inserting the form of
~ in
! one obtains

~'in!0;u0(v; p) =

p
M(2�)1=4�1=2

p
2�

1

p
e�(v+4M ln p�u0)

2�2=2ei!0(v+4M lnp�u0) (16)

8



whereupon it is seen that the wave packet is centered on the trajectory v +

4M ln p = u0. The momentum p at the surface of the star v = 0 is given by

p = eu0=4M. Hence for wave packets which reach I+ at late times u0, p at

the surface of the star is much larger than M�1.

In conclusion, we have the important result that, for all values of p,

only positive ones appear in the basis functions ~ in
! (p). Furthermore, for

p � M�1 which are those necessary to describe outgoing packets which

begin their journey from the surface of the star to I+ at values of xst �M ,

the content of the ~�in� (p) modes in terms of ~ in
! (p) contain both signs of !. On

the contrary for p! 2!, which are the relevant values to describe outgoing

packets which begin their journey to I+ at values of xst � M , ! becomes

equal to �. Therefore it is the former set that gives rise to particle creation

on I+, whereas the latter give rise to no creation. In this formalism, this
is what expresses the well known fact that Hawking radiation sets in as the
star's surface approaches the horizon exponentially closely. To derive these
results all that has been used is continuity at the star's surface. From now on

we shall characterize in-vacuum by a!j0ini = 0 where a! are the annihilation
operators associated with the  in

! modes and we re-emphasize that ! takes
on both signs in this characterization.

To �nd the content of j0ini in terms of the out-modes (de�ned on I+) one
considers the Fourier transform of ~ in(p) valid for p�M�1, hence x�M

 in
! (x) =

p
Mp
2�

Z 1

0
dp eipx p�4Mi!�1

=

p
Mp
2�

�(�4Mi!)jxj4Mi![�(x)e+2�M! + �(�x)e�2�M!] : (17)

The mode  in
! lies on both sides of the horizon. Only the piece outside the

horizon (i.e. proportional to �(+x)) propagates out to I+. From eqs. (11)

and (17) one has outside the horizon (x > 0)

 in
! (x)�(+x) =

(
�! 

out
! (x) ! > 0

�j!j 
out�
j!j (x) ! < 0

(18)

where we have introduced the Bogoljubov coe�cients
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�! =
�(�4Mi!)

p
2M! e2�M!

p
�

;

�! =
�(+4Mi!)

p
2M! e�2�M!

p
�

;

j�!=�!j = e�4�M! : (19)

This implies a steady thermal 
ux of emitted particles at temperature TH =

1=8�M .

The condition p > 0 used in eq. (14) in the present formalism is equivalent

to the Damour-Ru�ni requirement that  in
! (x) be analytic in the upper half

x plane. What we have seen here is that it is a direct consequence of the
existence of vacuum in the star. The description we have given here is readily
adapted to take into account truncation of the transplanckian spectrum (p >
1).

4 Confronting the Transplanckien Hiatus

The mechanism of how Hawking photons get created is through the combined
gravitational and Doppler red shift which is incurred as a wave packet voyages
from small values of x to I+. In the steady state of radiation the star's surface
is exponentially close to the horizon (xst 'Me�t=2M). In consequence the p
values, obtained from eq. (17), which dominate the integrand in the packet

in this region are exponentially large: the saddle point of the integrand in
eq. (17) is at p� = 4M!=x [10].

To see this more precisely, recall that the locus of saddle points traces
out the classical trajectories of photons. Near x = 0 they are obtained from
the Hamiltonian constraint

H � p

�
xp

2M
+ 2pv

�
(= 0) (20)

where we have used Eddington-Finkelstein coordinates x; v and their conju-

gate momentum p and pv (compare with eq. (8)). The canonical equation
are

_p = �@H=@x ; _x = @H=@p ; _v = @H=@! ; _pv = 0 ; (21)

10



where the dot denotes derivative with respect to an a�ne parameter along

the trajectory. These combine to yield

pv = �! = const: ; (22)

dp

dv
= � p

4M
: (23)

On mass shell, H vanishes and accordingly

x =
4M!

p
: (24)

Hence

p(v) = pste
�v=4M and x(v) =

4M!

pst
ev=4M (25)

where pst is a constant of integration. From this last equation, we see that
a photon of �xed energy !, erected at late time and reaching x = O(M) at
v� (where v� is typically of order the life time of the black hole = O(M3))
must have crossed the surface of the star at xst = 4M!=pst = e�v�=4MO(M)
with an enormous momentum pst = e+v�=4MO(!). This is the transplanckian

problem. At these high values of p, and concommitantly small values of
x, free �eld theory certainly breaks down. The gravitational interaction of
the s-wave modes under consideration, both with other modes and with the
background �eld whose source is in the degrees of freedom of the star becomes
enormous. Therefore the underpinnings of the free �eld calculation become

completely fallacious.
This does not mean, however, that the derivation given in Section 3 is

completely lost. This is Unruh's main point. We shall �rst illustrate these
considerations in the context of the Damour-Ru�ni formalism of Section 3 by
introducing a truncation in that scheme and in Section 5 proceed to analyze

Unruh's e�ective theory as given in Section 2. In both of these schemes one
explores the hypothesis that the physics near the horizon can be mimicked

by modifying the way the matter �eld propagates, but leaving both gravity

and the linear character of the 
uctuations una�ected.
First a few words of clari�cation are in order. Any truncation scheme can

be formulated in intrinsic geometric terms. However it is convenient to work

in a coordinate system which is privileged in the geometry of the incipient
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black hole. We make the assumption that the truncation takes a simple form

in such a privileged system. Explicitly, the origin is �xed and the angular

momentum expansion is carried out with respect to it. The radius has an

intrinsic geometric meaning. Furthermore the space time outside the star is

static and the origin of time is given by the inception of radial infall.

Let us therefore begin by truncating in the Eddington-Finkelstein system.

We suppose that the energy spectrum gets modi�ed for modes probing space

time at scales less then 1, i.e. for p > 1. Then eq. (8) is assumed to be

modi�ed to the form

g(�i@x)
�
x

2M
g(�i@x)� 2i@v

�
 (x; v) = 0 : (26)

Hence the mode equation corresponding to Eq 12) becomes

[@pg(p) + 4Mi!] ~F!(p) = 0 : (27)

The physics that goes into the evaluation of g(p) will be the subject of the
conjectural discussion of Section 7. For the present we only require that
g(p) = p for p < O(1) and g(p) = 1 for p > 1 since we anticipate that it
is only the Planckian and transplanckian modes which will be a�ected by

gravity. As in Unruh's model, the function g(p) is now to be identi�ed with
the energy associated with the mode number p rather than p itself. Indeed
in 
at space the proposed modi�cation eq. (26) reads

g(�i@x)[g(�i@x)� 2i@v] = 0 (28)

so that one sees that for outgoing modes �, the eigenvalue of i@v, is equal to
g(p)=2 rather than p=2 and is bounded by 1=2. In the curved space outside
the star, the energy at I+ (� !) is Doppler and gravitationally red shifted

when compared to the energy measured by the free falling observer (for a

discussion of the red shift see ref [12] Chapter 3 and Appendix D). This red

shift is represented by the factor x=4M in eq. (26) and the energy measured

by the free falling observer is 4M!=x = g(p) which is now bounded by 1=2.
It is instructive to see how the truncation deforms the classical trajectories

from the geodesic associated with the free �eld. The truncated version is
described by the Hamiltonian

12



H � �g(p)[ x
2M

g(p) + 2pv] (= 0) (29)

and eqs (23) and (24) now read

pv = �! ; (30)

dp=dv = �g(p)=4M : (31)

x = 4M!=g(p) ; (32)

Integrating, one sees that jpj decreases with v, initially (when jpj > 1) linearly

and then exponentially (when jpj < 1). For jpj > 1, one has jxj = j4M!j
and for jpj < 1, jxj is proportional to jpj�1, hence increases exponentially
with v. Thus at the same time as one avoids transplanckian energies, one
ceases to approach the horizon to within transplanckian distances (typically
!M = O(1)). Section 6 contains a sketch of the production process based

on these classical trajectories (see Fig. 4).
To establish Hawking radiation in the truncated theory we once more

have to characterize the in-modes exterior to the star. Subsequently it must
be shown that these in-modes evolve towards I+ so as to give the required
radiation.

From the truncated equation inside the star (eq. (28)) it is seen that
positive � implies positive p. Thus continuity across v = 0 once more implies
that in-modes on the outside also have positive p. (This crucial result, which
is independent of the details of g(p), results from our assumption of postu-
lating a linear �eld equation which keeps the d'Alembertian factorized into a

u and v piece. That this is su�cient is obvious, but that it is not necessary
will become apparent in Section 5). Thus our in-modes, solution of eq. (27)
with p > 0 are

~ in
! (p) =

p
Mp
2�
�(p)g(p)�1e�4iM!

R
p

dp=g(p) : (33)

The Fourier transform of  in
! (x) has contributions from p > 1 for x = O(1)

and p < 1 for x > O(1). This is seen by examining the saddle point condition
in the Fourier transform which in fact reconstructs the classical trajectories
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eq. (32). The piece which is relevant for Hawking production is at x >> 1,

hence concerned with cisplanckian values of p and one has

 in
! (x)jcis '

Z 1

M�1

dp

p
Mp
2�
eipx ~ in

! (p)

=
Z 1

M�1

dp

p
Mp
2�
eipxjpj�4Mi!�1

'
Z 1

0
dp

p
Mp
2�
eipxjpj�4Mi!�1 ; x >> 1 (34)

thereby recovering eq. (17)1.

It should be noted that the norm of the cisplanckian modes is the same as

in the free �eld case. This results from the fact that the truncated problem
is possessed of a conserved norm (= 2�

R
dp ~ �

!(p) g(p)
~ !0(p) = �(! � !0))

which reduces to the free �eld form for jpj < 1. Thus the decomposition of
 in
! (x)jcis into pieces localized at x > 0 and x < 0 as in eq. (17) has its usual

interpretation in terms of unitarity.
When translated into the variable x, what we have shown is that the

free �eld vacuum is maintained at x � O(1) since one only requires the
characterization of the in-state in terms of its cisplanckian content in this
region. Most succinctly, Unruh vacuum is still a valid concept just outside a

Planckian skin of the horizon. This is every bit as valid as the statement that
Unruh vacuum is the correct description of the in-state in free �eld theory
outside the star. A little bit of Planckian fuzz around the horizon does no
injury to the physics since the conversion to Hawking photons on I+ occurs
outside the star due to the redshift which the outgoing modes feel on the
scale of x = O(M) and not x = O(1) (this has been pointed out by Jacobson

[13] who however did not derive the insensitivity of Hawking radiation to
planckian tinkering).

1We point out that eq. (28) has in general a large number of linearly independent
solutions (an \in�nity" if g(@x) is not polynomial in @x). These linearly independent
solutions are recovered from the function ~ in

!
(p) by specifying which integration contour

is used to take the Fourier transform. According to how the singularities of ~ in
!
(p) are

encircled, di�erent solutions are obtained. We have chosen the contour to coincide with
the path in the absence of truncation, namely to lie on the real axis. Other prescriptions
would presumably give rise to runaway solutions and the properties of the theory at low
momentum would not coincide with the free �eld theory.

14



The picture that emerges is that 
uctuations within this skin steadily

develop into outgoing pairs. Note that from eq. (31), p in this region grows

linearly in v. The interpretation is that there is a conversion of modes within

the skin to become the usual outgoing modes of free �eld theory, thereby

guaranteeing a steady state. Thus at large values, p has become converted

from an energy to a mode counting parameter. Note that the total time of

evaporation is O(M3), so that the total number of modes which boil o� from

those initially inside the skin is O(M2) which is proportional to the usual

estimate for the entropy of the black hole.

5 The Truncated Unruh Model

In this section we analyze the production of Hawking phonons based on

Unruh's truncation eq. (3). As in Section 4, the analysis is based on the
momentum representation of modes. Complications occur because the equa-
tion for the modes near the horizon is second order and it is necessary to
control that the transplanckian sector does not contaminate the cisplanckian
physics. This was obvious in Section 4 once the boundary conditions were

set.
To have a clear idea of the mechanism of production from the modes, it

is �rst worthwhile to go into the classical motion along trajectories. Whilst
this part of the analysis does not give the production per se, it does give the
motion of wave packets before and after production. In this way one has a

guide to the portion of the mode analysis which is relevant.
The Hamiltonian, which generates the classical trajectories corresponding

to the wave equation eq. (3) is

H =
h
p� + pV (�)]2 � F 2(p)

i
(= 0) (35)

In the context of eq. (35), p� is the momentum conjugate to �; p being

conjugate to �. From the canonical equations one �nds

p� = �! = const: ; (36)

dp=d� = �pV 0(�) ; (37)

d�=d� =

(
V (�) + F 0(p) on trajectories of type II or III

V (�)� F 0(p) on trajectories of type I
(38)
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Since the 
uid 
ows to the left with V decreasing to the left (so that near

the horizon V = �1 + �=4M), it is seen that jpj always decreases in �. As a
consequence we can, and shall, describe evolution with respect to � in terms

of p.

ΙΙΙ

Ι

ΙΙ

−ω+F(p) −ω+F(p)

ξ>
4Μω

ξ=
ξ  

   (
ω)≈4Μ

ω

ξ=
0

ξ≈
−4Μ

ω

ξ<
−4Μ

ω
min

−ω−F(p)−ω−F(p)

p
−ω

Figure 1: The two curves �! � jF (p)j (solid curves) and the family of lines
�V (�)p (doted lines) are plotted as functions of p for some representative
values of �. Their intersections give the trajectories �(p). Their are three
trajectories labeled I, II, III. The set I corresponds to a v = const trajectory.

The set II crosses the horizon when � = 0 and then starts to propagate for
� < O(�4M!) whereupon it corresponds to a u = const trajectory. The
points in class III never reach the horizon: there are no solutions in this
class for � < �min(!) = O(4M!) but their are two solutions for � < �min

corresponding to a trajectory which bounces.

To analyze the trajectories we use the on mass shell condition �pV (�) =
�! � jF (p)j. In Fig. 1 is plotted as functions of p, the family of curves
�V (�)p, and the two curves �! � jF (p)j. The intersections give the trajec-
tories �(p) at �xed !. It is seen that there are three types of trajectories:

I The sequence of points near the origin all have small negative p, hence
correspond to a usual null geodesic in Schwarzschild geometry which,
in E F coordinates is v= constant. They are therefore uninteresting for

the production of particles.
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II These are points which, for � � �4M!, have p � 1, hence F (p)=

1. A particle on this part of the trajectory is at rest with respect to

the 
uid. For � < �4M!, p is < 1 and the particles then propagate

with respect to the 
uid. This trajectory stops at p = 0 owing to the

monotonous character of p(�) ( eq. (37)).

III The third trajectory has p > 0. Once more for large positive p it

is non propagating. As jpj decreases, it starts to propagate for p =

O(1) whereupon it reaches a minimum value of �(� �min(!)) which is

O(4M!). As jpj continues to decrease, � now increases so as to describe

the propagating part of the trajectory for negative values of p.

Trajectories II and III are plotted in Fig.4 where the functions �(v) are

displayed (these are very similar to the functions �(�) since the coordinate
transformation used to go from eq. (1) to eq. (2), shows that near the
horizon � di�ers from v by a regular function of �.). Production is concerned
with the mixing of trajectories say III into II, i.e. a wave packet localized
on trajectory III at large � and large p (that is at early times, � small) has
an amplitude � to be localized on trajectory II at small p (� large). Note

that had we taken ! < 0 rather than ! > 0, trajectory II would then have
positive p and trajectory III negative p rather than the reverse.

We now study eq. (3) near the horizon where V ' �1 + �=4M . In
momentum space, after some elementary manipulation, the equation takes
the form

0
@ p2

4M2

"
@p +

i!4M + 1

p
+ i4M

#2
+ F 2(p)

1
A ~�!(p) = 0 : (39)

For jpj < 1 where F (p) = p, the solutions are

I : ~�!(p) =

s
M

�
�(�p)jpj�4Mi!�1e�i8Mp ; jpj < 1 ;

II, III : ~�!(p) =

s
M

�
�(�p)jpj�4Mi!�1 ; jpj < 1 : (40)

Solutions in class I are associated with the trajectories of class I (v-modes)
and are not involved in production (the singular behavior of these modes is
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due to the presence of the (spurious) Cauchy horizon at � = 8M). For p� 1,

where F (p) = 1, the solutions are

~�!(p) =

s
M

�
�(�p)jpj�4Mi!�1e+i4Mpjpji�� ; p� 1 (41)

where �� are the roots of �(� � 1) � (4M)2 = 0. We take M � 1 so that

�� ' �4M � i
2
. These modes serve as a basis of second quantization. Their

positive and negative frequency parts will then correspond to the bases of the

quantized �eld wherein the annihilation part (positive frequency) annihilates

the in-vacuum (i.e. vacuum at large �, hence large p). To determine this we

refer to the conserved scalar product which we norm in the conventional way

i

Z
d� [�!0(�)

� (@� + V (�)@�)�!(�) � �!0(�)
� $ �!(�)] = ��(! � !0)

(42)

or in momentum space

i2�
Z
dp
h
~�!0(p)

� (@� � ip � 1=4M � p=4M@p) ~�!(p)

�~�!0(p)
� $ ~�!(p)

i
= ��(! � !0) :

(43)

Inserting eq. (41) into eq. (43) it is seen that the sign of the scalar product
is determined by the sign of �� in eq. (41). The condition of positive
frequency (�+ = +4M) corresponds to taking wave packets localized along

the trajectories �pV (�) = �! + jF (p)j rather than �pV (�) = �! � jF (p)j.
The additional requirement that the modes be localized along trajectories II
or III rather than I then imposes p > 0. The condition of positive p which
played an essential rôle in the preceding sections is thereby recovered. In

summary the in-modes appropriate for second quantization which give rise

to Hawking radiation are

~�in! (p) =

s
M

�
�(p)p�4Mi!�1e�i4Mppi4M+1=2 ; p� 1 : (44)

It remains to establish how these in-modes which have been characterized
at large p evolve into their forms eq. (40) at small p. To this end we use
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the WKB approximation whose validity we justify subsequently. Thus we

approximate the full solution of the in-mode for positive p by

~'in! (p) = �(p)p�4Mi!�1 e
�i4M [p�

R
p

dp F (p)=p]q
F (p)=p

: (45)

Equation 45) is exact for both jpj < 1 and jpj � 1. The validity of the WKB

expansion is assured owing to the inequality

d(p=4MF (p))

dp
� 1 : (46)

This condition can be given a geometric interpretation. To this end one

reexpresses the solution �(p) of the on mass shell condition H = 0 ( eq. (35)

as �(p) = �F (p) + ��(p) where �F (p) corresponds to a point which moves
with the 
uid ! + pV (�F ) = 0 and �� describes motion with respect to
the background (pV 0(�F )��)

2 � F 2(p) = 0. Then the validity of the WKB
approximation takes the form

d(1=��)

dp
� 1 : (47)

which expresses that the motion with respect to the background 
uid is su�-
ciently \slow". The l.h.s. of this inequality is O(M�1) which by assumption

is � 1: Any back scattering due to the second order character of the di�er-
ential equation will be a non perturbative e�ect (typically of O(e�M )) which
would result in the mixing of u and v type modes. It is negligible.

Once having established that the low p part of the in-modes is of the form
eq. (40), types II and III, with only positive p, the results of Section 3 follow

forthwith: to wit Fourier transform gives a thermal distribution in ! arising
from packets built from the low momentum part of the modes.

In any truncation scheme, be it linear or nonlinear, one may hope that

a condition of adiabaticity similar to eq. (47) will be applicable. It will
then imply that the creation of particles at a Planckian distance from the

horizon is strongly suppressed. Thus Unruh vacuum will once more be a valid
concept on scales x > O(1) and the usual spectrum of Hawking radiation will

be recovered. Were there any Planckian particles created at x = O(1) they
would severely disrupt the Hawking 
ux. Their absence can be taken to
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be an expression of the general principle (very well veri�ed experimentally)

that 
at space is stable against creation of Planckian particles. Since the

curvature in Schwarzschild geometry acts on scales �x = O(M), at a Planck

distance from the horizon space looks almost 
at and the principle can be

applied with con�dence. Thus the absence of created Planckian particles at

the horizon should come as no surprise.

6 The classical trajectories
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Figure 2: The classical trajectories of outgoing null geodesics (thin dotted

curves) given by the Hamiltonian eq. 20) are displayed in the Eddington-
Finkelstein coordinate system. The light ray which generates the horizon, the
infalling shell, the origin r = 0 and the singularity are also represented.

We now have on hand three schemes on how to get Hawking radiation.
It is interesting to display in an Eddington-Finkelstein graph the classical
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trajectories corresponding to the modes in the three cases. These encode

vacuum 
uctuations in the past which are converted into quanta at x =

O(M).

In Fig 2 is displayed the usual free �eld model. A vacuum 
uctuation

emerges from the star, it is a pair that straddles the horizon. The 
uctuation

hugs the horizon at an exponentially small distance. Outside the star it starts

to propagate (outwards for the observed Hawking photon and towards the

singularity for its partner -unobservable in Schwarzschild time but taking

form on the other side of the horizon in �nite Kruskal time). Upon reaching

x = O(M) the 
uctuation has become an on mass shell quanta which now

propagates along the trajectory v � 2r = const.

In Fig 3 the e�ect of the simple truncation of Section 4 is shown. We

have taken g(p) to be unity for p > 1 (and of course g(p) = p for p < 1). The
propagation on either side of the horizon begins at the edges of the Planckian
zone jxj = O(1). The Planckian zone jxj < 1 is thus steadily solicited to give
out radiation at a steady rate.

Finally in Fig. 4 the trajectories in Unruh's truncation are sketched.
Here they begin from I�, but unlike the free �eld case they do not go into
the star to re
ect and then come out as in Fig 2. Rather they reach the
horizon region directly whereupon at x = �1 they re
ect. The amplitude
of the re
ected wave is augmented; it is accompanied by a partner which
appears on the other side with amplitude � and the production is encoded

in �2 � 1 = �2 = (e�! � 1)�1. It is fairly di�cult to interpret this structure
in terms of the black hole. In the 
uid it comes about due to the \riding in"
of the modes on the background 
ow.

More important, from the �gures it is seen that in all cases, at large dis-
tance from the horizon jxj � 1, jpj � 1, one recovers the usual free particle

trajectories. Therefore, independently of the truncation we have used, Hawk-
ing radiation remains a pair production phenomenon: the outgoing quanta
are accompagned by partners on the other side of the horizon.

7 Conclusion

It appears to us that the scenario based on eq. (26) could well turn out to

re
ect some part of the truth. The function g(p) deviates from its free �eld
value, p, for p > 1 so as to give rise to a sort of quasi-particle description.
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Figure 3: The trajectories of outgoing light rays given by the truncated Hamil-

tonian eq. 29) are displayed in the Eddington-Finkelstein coordinate system.
In this case the trajectories no longer approach the horizon exponentially but
rather they stick at a planckian distance.

The strong gravitational interaction among the modes will result in contin-
uous mixing of angular momenta, so in the rigorous theory, restriction to
s-waves will no longer be possible. The whole medium is to be regard as
a matter gravitational soup, which has some s-wave content. For values of

x greater than unity this content becomes that of the usual free �eld and

there should be a turn over from a quasi to true particle theory. The trans-
planckian soup steadily feeds into the free �eld sector. It should be possible

to display the transition region (x = O(1), p = O(1)) by perturbative meth-
ods, for example by expanding the gravitational action to quadratic terms

in 
uctuations around the background geometry. This will show how the
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modes start interacting with each other as they move into the Planckian re-

gion. We might expect g(p) to become complex for p > 1, corresponding to a

Planckian lifetime of the s-wave quasi-particle. Such behavior might encode

that fact that an s-wave gets swallowed up in the extrapolation backwards in

time towards the Planckian skin. Then instead of the extrapolation through

the star drawn in Fig 3, the modes just peter out within the skin. This is

indicated by some shading in Fig 5.

In addition there is the interaction of the modes with the gravitational

�eld emanating from the sources which constitute the star (possibly taken

together with the mean e�ect due to the other modes, as in the semiclassical

theory). Here it would be \recoil" e�ects of the gravitational �eld which

would be responsible for deviations from free �eld theory. That such e�ects

can be important has recently been shown by one of us (RP) in the context
of the accelerated detector [14], and more recently corroborated in a study
of accelerating mirrors [15]. What the incidence of these two types of e�ects
on the modes is for the unitarity problem remains to be seen.

Finally one must be prepared to encounter the very strong coupling prob-
lem which will arise well into the transplanckian region where conceptual
problems will arise concerning the nature of space{time.

Whatever, on the basis of the above considerations, we conjecture strongly
that Hawking radiation is protected from the vicissitudes of quantum gravity.
It appears as an essentially kinematic response to the presence of the event

horizon encountered in the collapse of a macroscopic black hole.

Added note After this manuscript was completed, C. Bouchiat and F. En-
glert called our attention to the following conceptual problem. The trun-
cation we have used treats u-modes and v-modes asymmetrically, thereby

explicitly breaking the invariance of the theory under local Lorentz transfor-

mations. However one should recall that the formation of a black hole by
the collapse of a star induces an asymmetry between u-ness and v-ness: only
a future horizon is formed but no past horizon exists. Concommitantly the

�eld state is asymmetric, the v-part being Schwarzschild (Boulware vacuum)

in character whereas the u-part is Kruskal (Hartle-Hawking) in character (i.e.
the state is Unruh vacuum).

We beleive that it is not unreasonable to envisage that a phenomenological
truncation of the �eld equations is state dependent since it should encode
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the dynamics of the matter �eld state induced by the quantum gravitational

interactions. In Unruh vacuum the truncation would then treat u and v

modes di�erently. What would be the e�ect of a symmetric truncation in a

symmetric state such as the eternal black hole situation remains to be seen.
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Figure 4: The trajectories of light rays in Unruh's truncated hydrodynamic
model are displayed in the Eddington-Finkelstein coordinate system. Only
class II and III light rays have been displayed as it is these which are respon-
sible for production. Note that since v and � di�er by a regular function of
x, the trajectories in the coordinate system �; � given by the Hamiltonian eq.

35) would be very similar to those depicted in the �gure.
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Figure 5: The trajectories of light rays in the Eddington-Finkelstein coordi-

nate system if the truncation g(p) where complex. In this case the trajectories
disapear into some quantum fuzz which is represented by some shading in the

�gure.
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