867 research outputs found
Investigation of the solidification, structure and properties of eutectic alloys including consideration of properties control Progress report
Solidification, structure, and properties of nickel and niobium eutectic alloy
Investigation of the solidification, structure and properties of eutectic alloys including consideration of properties control
Solidification structure and properties of eutetic alloy
Elastic Deformation of Polycrystals
We propose a framework to model elastic properties of polycrystals by
coupling crystal orientational degrees of freedom with elastic strains. Our
model encodes crystal symmetries and takes into account explicitly the strain
compatibility induced long-range interaction between grains. The coupling of
crystal orientation and elastic interactions allows for the rotation of
individual grains by an external load. We apply the model to simulate uniaxial
tensile loading of a 2D polycrystal within linear elasticity and a system with
elastic anharmonicities that describe structural phase transformations. We
investigate the constitutive response of the polycrystal and compare it to that
of single crystals with crystallographic orientations that form the
polycrystal.Comment: 4 pages, 4 ps figure
Correlation between stick-slip frictional sliding and charge transfer
A decade ago, Budakian and Putterman (Phys. Rev. Lett., {\bf 85}, 1000
(2000)) ascribed friction to the formation of bonds arising from contact
charging when a gold tip of a surface force apparatus was dragged on
polymethylmethacrylate surface. We propose a stick-slip model that captures the
observed correlation between stick-slip events and charge transfer, and the
lack of dependence of the scale factor connecting the force jumps and charge
transfer on normal load. Here, stick-slip dynamics arises as a competition
between the visco-elastic and plastic deformation time scales and that due to
the pull speed with contact charging playing a minor role. Our model provides
an alternate basis for explaining most experimental results without ascribing
friction to contact charging.Comment: 8 pages, 4 figures, To be appeared in Physical Review
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7
single crystals observed in ac susceptibility measurements. We show that the
vortex system can be trapped in different metastable states with variable
degree of order arising in response to different system histories. The pressure
exerted by the oscillating ac field assists the vortex system in ordering,
locally reducing the critical current density in the penetrated outer zone of
the sample. The robustness of the ordered and disordered states together with
the spatial profile of the critical current density lead to the observed memory
effects
State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime
Recently, macroscopic mechanical oscillators have been coaxed into a regime
of quantum behavior, by direct refrigeration [1] or a combination of
refrigeration and laser-like cooling [2, 3]. This exciting result has
encouraged notions that mechanical oscillators may perform useful functions in
the processing of quantum information with superconducting circuits [1, 4-7],
either by serving as a quantum memory for the ephemeral state of a microwave
field or by providing a quantum interface between otherwise incompatible
systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode
of a microwave field to and from a mechanical oscillator has not been
demonstrated owing to the inability to agilely turn on and off the interaction
between microwave electricity and mechanical motion. Here we demonstrate that
the state of an itinerant microwave field can be coherently transferred into,
stored in, and retrieved from a mechanical oscillator with amplitudes at the
single quanta level. Crucially, the time to capture and to retrieve the
microwave state is shorter than the quantum state lifetime of the mechanical
oscillator. In this quantum regime, the mechanical oscillator can both store
and transduce quantum information
Casimir interaction: pistons and cavity
The energy of a perfectly conducting rectangular cavity is studied by making
use of pistons' interactions. The exact solution for a 3D perfectly conducting
piston with an arbitrary cross section is being discussed.Comment: 10 pages, 2 figures, latex2
- …