1,004 research outputs found

    Statistics of skyrmions in Quantum Hall systems

    Full text link
    We analyze statistical interactions of skyrmions in the quantum Hall system near a critical filling fraction in the framework of the Ginzburg-Landau model. The phase picked up by the wave-function during an exchange of two skyrmions close to ν=1/(2n+1)\nu=1/(2n+1) is π[S+1/2(2n+1)]\pi[S+1/2(2n+1)], where SS is the skyrmion's spin. In the same setting an exchange of two fully polarized vortices gives rise to the phase π/(2n+1)\pi/(2n+1). Skyrmions with odd and even numbers of reversed spins have different quantum statistics. Condensation of skyrmions with an even number of reversed spins leads to filling fractions with odd denominators, while condensation of those with an odd number of reversed spins gives rise to filling fractions with even denominators.Comment: 6 pages in Latex. addendum - skyrmions with odd or even number of reversed spins have different quantum statistics. They condense to form respectively even or odd denominator filling fraction state

    Korringa ratio of ferromagnetically correlated impure metals

    Full text link
    The Korringa ratio, K\cal K, obtained by taking an appropriate combination of the Knight shift and nuclear spin-lattice relaxation time, is calculated at finite temperature, TT, in the three-dimensional electron gas model, including the electron-electron interaction, UU, and non-magnetic impurity scatterings. K\cal K varies in a simple way with respect to UU and TT; it decreases as UU is increased but increases as TT is raised. However, K\cal K varies in a slightly more complicated way with respect to the impurity scatterings; as the scattering rate is increased, K\cal K increases for small UU and low TT, but decreases for large UU or high TT regime. This calls for a more careful analysis when one attempts to estimate the Stoner factor from K\cal K.Comment: 7 pages including 3 figures. To be published in Phys. Rev. B, Dec.

    Nuclear Spin Relaxation for Higher Spin

    Full text link
    We study the relaxation of a spin I that is weakly coupled to a quantum mechanical environment. Starting from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic approximation. These are valid for arbitrary I and also for a general stationary non--equilibrium state of the environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltzmannian equilibrium distribution for given spin I. The relaxation towards the stationary solution is characterized by a set of relaxation times, the longest of which can be shorter, by a factor of up to 2I, than the relaxation time in the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure

    Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5

    Full text link
    We prove that for a hard core interaction the ground state spin polarization in the low Zeeman energy limit is given by P=2/ν5P=2/\nu-5 for filling fractions in the range 1/3ν2/5 1/3 \leq\nu\leq 2/5 . The same result holds for a Coulomb potential except for marginally small magnetic fields. At the magnetic fields B<20TB<20T unpolarized quasielectrons can manifest themselves by a characteristic peak in the I-V characteristics for tunneling between two ν=1/3\nu=1/3 ferromagnets.Comment: 8 pages, Latex. accepted for publication in Phys.Rev.

    Critical Behavior of Nuclear-Spin Diffusion in GaAs/AlGaAs Heterostructures near Landau Level Filling \nu=1

    Full text link
    Thermal measurements on a GaAs/AlGaAs heterostructure reveal that the state of the confined two-dimensional electrons dramatically affects the nuclear-spin diffusion near Landau level filling factor \nu=1. The experiments provide quantitative evidence that the sharp peak in the temperature dependence of heat capacity near \nu=1 is due to an enhanced nuclear-spin diffusion from the GaAs quantum wells into the AlGaAs barriers. We discuss the physical origin of this enhancement in terms the possible Skyrme solid-liquid phase transition.Comment: 1 LateX file, 3 figures, submitte

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Pairing in the quantum Hall system

    Full text link
    We find an analogy between the single skyrmion state in the quantum Hall system and the BCS superconducting state and address that the quantum mechanical origin of the skyrmion is electronic pairing. The skyrmion phase is found to be unstable for magnetic fields above the critical field Bc(T)B_{c}(T) at temperature TT, which is well represented by the relation Bc(T)/Bc(0)[1(T/Tc)3]1/2B_c(T)/B_{c}(0) \approx {[1-(T/T_c)^3]}^{1/2}.Comment: revtex, two figures, to appear in Phys. Rev. B (Rapid Communications

    Electronic transport through nuclear-spin-polarization-induced quantum wire

    Full text link
    Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.Comment: 5 pages, 4 figure

    Geometric Phases and Multiple Degeneracies in Harmonic Resonators

    Full text link
    In a recent experiment Lauber et al. have deformed cyclically a microwave resonator and have measured the adiabatic normal-mode wavefunctions for each shape along the path of deformation. The nontrivial observed cyclic phases around a 3-fold degeneracy were accounted for by Manolopoulos and Child within an approximate theory. However, open-path geometrical phases disagree with experiment. By solving exactly the problem, we find unsuspected extra degeneracies around the multiple one that account for the measured phase changes throughout the path. It turns out that proliferation of additional degeneracies around a multiple one is a common feature of quantum mechanics.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Let
    corecore