1,004 research outputs found
Statistics of skyrmions in Quantum Hall systems
We analyze statistical interactions of skyrmions in the quantum Hall system
near a critical filling fraction in the framework of the Ginzburg-Landau model.
The phase picked up by the wave-function during an exchange of two skyrmions
close to is , where is the skyrmion's
spin. In the same setting an exchange of two fully polarized vortices gives
rise to the phase . Skyrmions with odd and even numbers of reversed
spins have different quantum statistics. Condensation of skyrmions with an even
number of reversed spins leads to filling fractions with odd denominators,
while condensation of those with an odd number of reversed spins gives rise to
filling fractions with even denominators.Comment: 6 pages in Latex. addendum - skyrmions with odd or even number of
reversed spins have different quantum statistics. They condense to form
respectively even or odd denominator filling fraction state
Korringa ratio of ferromagnetically correlated impure metals
The Korringa ratio, , obtained by taking an appropriate combination
of the Knight shift and nuclear spin-lattice relaxation time, is calculated at
finite temperature, , in the three-dimensional electron gas model, including
the electron-electron interaction, , and non-magnetic impurity scatterings.
varies in a simple way with respect to and ; it decreases as
is increased but increases as is raised. However, varies in a
slightly more complicated way with respect to the impurity scatterings; as the
scattering rate is increased, increases for small and low , but
decreases for large or high regime. This calls for a more careful
analysis when one attempts to estimate the Stoner factor from .Comment: 7 pages including 3 figures. To be published in Phys. Rev. B, Dec.
Nuclear Spin Relaxation for Higher Spin
We study the relaxation of a spin I that is weakly coupled to a quantum
mechanical environment. Starting from the microscopic description, we derive a
system of coupled relaxation equations within the adiabatic approximation.
These are valid for arbitrary I and also for a general stationary
non--equilibrium state of the environment. In the case of equilibrium, the
stationary solution of the equations becomes the correct Boltzmannian
equilibrium distribution for given spin I. The relaxation towards the
stationary solution is characterized by a set of relaxation times, the longest
of which can be shorter, by a factor of up to 2I, than the relaxation time in
the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure
Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5
We prove that for a hard core interaction the ground state spin polarization
in the low Zeeman energy limit is given by for filling fractions in
the range . The same result holds for a Coulomb
potential except for marginally small magnetic fields. At the magnetic fields
unpolarized quasielectrons can manifest themselves by a characteristic
peak in the I-V characteristics for tunneling between two
ferromagnets.Comment: 8 pages, Latex. accepted for publication in Phys.Rev.
Critical Behavior of Nuclear-Spin Diffusion in GaAs/AlGaAs Heterostructures near Landau Level Filling \nu=1
Thermal measurements on a GaAs/AlGaAs heterostructure reveal that the state
of the confined two-dimensional electrons dramatically affects the nuclear-spin
diffusion near Landau level filling factor \nu=1. The experiments provide
quantitative evidence that the sharp peak in the temperature dependence of heat
capacity near \nu=1 is due to an enhanced nuclear-spin diffusion from the GaAs
quantum wells into the AlGaAs barriers. We discuss the physical origin of this
enhancement in terms the possible Skyrme solid-liquid phase transition.Comment: 1 LateX file, 3 figures, submitte
Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60
We present an NMR study of Na2C60 and K4C60, two compounds that are related
by electron-hole symmetry in the C60 triply degenerate conduction band. In both
systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements
detect a gap in the electronic structure, most likely related to
singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or
C60^{4-}. However, the extended temperature range of the measurements presented
here (10 K to 700 K) allows to reveal deviations with respect to this general
trend, both at high and low temperatures. Above room temperature, 1/T1 deviates
from the activated law that one would expect from the presence of the gap and
saturates. In the same temperature range, a lowering of symmetry is detected in
Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60,
modifications of the 13C spectra lineshapes also indicate a structural
modification. We discuss this high temperature deviation in terms of a coupling
between JTD and local symmetry. At low temperatures, 1/TT tends to a
constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual
metallic character, which emphasizes the proximity of metallic and insulting
behaviors in alkali fullerides.Comment: 12 pages, 13 figure
Pairing in the quantum Hall system
We find an analogy between the single skyrmion state in the quantum Hall
system and the BCS superconducting state and address that the quantum
mechanical origin of the skyrmion is electronic pairing. The skyrmion phase is
found to be unstable for magnetic fields above the critical field at
temperature , which is well represented by the relation .Comment: revtex, two figures, to appear in Phys. Rev. B (Rapid Communications
Electronic transport through nuclear-spin-polarization-induced quantum wire
Electron transport in a new low-dimensional structure - the nuclear spin
polarization induced quantum wire (NSPI QW) is theoretically studied. In the
proposed system the local nuclear spin polarization creates the effective
hyperfine field which confines the electrons with the spins opposite to the
hyperfine field to the regions of maximal nuclear spin polarization. The
influence of the nuclear spin relaxation and diffusion on the electron energy
spectrum and on the conductance of the quantum wire is calculated and the
experimental feasibility is discussed.Comment: 5 pages, 4 figure
Geometric Phases and Multiple Degeneracies in Harmonic Resonators
In a recent experiment Lauber et al. have deformed cyclically a microwave
resonator and have measured the adiabatic normal-mode wavefunctions for each
shape along the path of deformation. The nontrivial observed cyclic phases
around a 3-fold degeneracy were accounted for by Manolopoulos and Child within
an approximate theory. However, open-path geometrical phases disagree with
experiment. By solving exactly the problem, we find unsuspected extra
degeneracies around the multiple one that account for the measured phase
changes throughout the path. It turns out that proliferation of additional
degeneracies around a multiple one is a common feature of quantum mechanics.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Let
- …
