138 research outputs found

    Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment

    Get PDF
    Abstract Advanced therapies which combine cells with biomaterial-based carriers are recognized as an emerging and powerful method to treat challenging diseases, such as spinal cord injury (SCI). By enhancing transplanted cell survival and grafting, biomimetic hydrogels can be properly engineered to encapsulate cells and locate them at the injured site in a minimally invasive way. In this work, chitosan (CS) based hydrogels were developed to host mesenchymal stem cells (MSCs), since their paracrine action can therapeutically enhance the SC regeneration, limiting the formation of a glial scar and reducing cell death at the injured site. An injectable and highly permeable CS-based hydrogel was fabricated having a rapid gelation upon temperature increase from 0 to 37 °C. CS was selected as former material both for its high biocompatibility that guarantees the proper environment for MSCs survival and for its ability to provide anti-inflammatory and anti-oxidant cues. MSCs were mixed with the hydrogel solution prior to gelation. MSC viability was not affected by the CS hydrogel and encapsulated MSCs were able to release MSC-vesicles as well as to maintain their anti-oxidant features. Finally, preliminary in vivo tests on SCI mice revealed good handling of the CS solution loading MSCs during implantation and high encapsulated MSCs survival after 7 days

    Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses

    Get PDF
    Copper-containing bioactive glasses (Cu-MBGs) are attracting increasing interest as multifunctional agents for hard and soft tissue healing due to the ability of released copper ions to stimulate osteogenesis as well as angiogenesis and to impart anti-bacterial properties. The conjugation of these nanomaterials with a vehicle phase based on thermosensitive hydrogels represents an effective strategy to design non-invasive injectable devices for the in situ delivery of therapeutic ions from MBGs. In this contribution, Cu-containing MBGs were prepared by an aerosol-assisted spray-drying method (MBG_Cu 2%_SD) in the form of microspheres (surface area of ca 220m2 g−1) and through a sol-gel synthesis (MBG_Cu 2% _SG) in the form of spheroidal nanoparticles (surface area above 700m2 g−1). Both Cu-containing samples were able to release copper ions, although with different rates and percentage release. MBG_Cu 2%_SG released the total incorporated amount of Cu ions with a faster kinetics compared to MBG_Cu 2%_SD, that released approximately the 60% of copper. Cu-MBGs were incorporated with a final concentration of 20 mg/mL into a thermosensitive sol-gel system consisting of a novel amphiphilic poly(ether urethane) based on a commercialy available Poloxamer 407 (P407), with improved gelation ability, mechanical strength and stability in aqueous solution with respect to native P407. Cu-MBG-loaded hydrogels were characterised in terms of sol-to-gel transition temperature and time, injectability and stability in aqueous environment at 37 °C. The hybrid formulations showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3–5 min at 37 °C) and injectability in a wide range of temperatures (5–37 °C) through different needles (inner diameter in the range 0.6–1.6 mm)

    FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes

    Get PDF
    [EN] A set of ancient Antoninianus silver coins, dating back between 249 and 274ÂżA.D. and minted in Rome, Galliae, Orient and Ticinum, have been characterized. We use, for the first time, a combination of nano-invasive (focused ion beam-field emission scanning electron microscopy-X-ray microanalysis (FIB-FESEM-EDX), voltammetry of microparticles (VIMP)) and destructive techniques (scanning electron microscopy (SEM-EDX) and electron microprobe analysis (EMPA)) along with non-invasive, i.e., micro-Raman spectroscopy. The results revealed that, contrary to the extended belief, a complex Ag-Cu-Pb-Sn alloy was used. The use of alloys was common in the flourishing years of the Roman Empire. In the prosperous periods, Romans produced Ag-Cu alloys with relatively high silver content for the manufacture of both the external layers and inner nucleus of coins. This study also revealed that, although surface silvering processes were applied in different periods of crisis under the reign of Antoninii, even during crisis, Romans produced Antoninianus of high quality. Moreover, a first attempt to improve the silvering procedure using Hg-Ag amalgam has been identified.Financial support was provided by Sapienza University of Rome (Ateneo funding, 2014 15) and Spanish projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported with Ministerio de EconomĂ­a, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, as well as project CTQ2017-85317-C2-1-P supported with funds from, MINECO, ERDF and Agencia Estatal de InvestigaciĂłn (AEI). PhD grants of the Department of Earth Sciences, Sapienza University of Rome, are gratefully acknowledgedDomenech Carbo, MT.; Di Turo, F.; Montoya, N.; Catalli, F.; DomĂ©nech CarbĂł, A.; De Vito, C. (2018). FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-28990-xS8DomĂ©nech-CarbĂł, A., del Hoyo-MelĂ©ndez, J. M., DomĂ©nech-CarbĂł, M. T. & Piquero-Cilla, J. Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchem. J. 130, 47–55 (2017).Di Turo, F. et al. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 955, 36–47 (2017).Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Anal. Chem. 83, 5639–5644 (2011).Giumlia-Mair, A. et al. Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology 25(5), 245–261 (2010).Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage 7, 1–12 (2006).Campbell, W. Greek and Roman plated coins, Numismatics Notes and Monographs 57, American Numismatic Society, New York (1933).Kallithrakas-Kontos, N., Katsanos, A. A. & Touratsoglou, J. Trace element analysis of Alexander the Great’s silver tetradrachms minted in Macedonia, Nuclear Instruments and Methods in Physics. Research B 171, 342–349 (2000).Catalli, F. Numismatica greca e romana. (Libreria dello Stato, 2003).Cope, L. H. The Metallurgical development of the Roman Imperial Coinage during the first five centuries. (Liverpool, 1974).Scriptores Historiae Augustae. Historia Augusta. (The Perfect Library, 2014).Vlachou-Mogire, C., Stern, B. & McDonnell, J. G. The application of LA-ICP-MS in the examination of the thin plating layers found in late Roman coins. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 265, 558–568 (2007).Keturakis, C. J. et al. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Appl. Surf. Sci. 376, 241–251 (2016).Ingo, G. M. et al. Roman sophisticated surface modification methods to manufacture silver counterfeited coins. Appl. Surf. Sci. 1–11, https://doi.org/10.1016/j.apsusc.2017.01.101 (2017).La Niece, S. In: La Niece S. & Craddock, P. (Eds), Metal, Plating and Platination, Butterworth–Heinemann, London, 1993, p. 201.Anheuser, K. & France, P. Silver plating technology of the late 3rd century Roman coinage. Historical Metallurgy 36(1), 17–23 (2002).Anheuser, K. & Northover, P. Silver plating on Roman and Celtic coins from Britain– A technical study. The British Numismatic Journal 64, 22–32 (1994).Anheuser, K. Where is all the amalgam silvering? Materials Issues1996 in Art and Archaeology - V proceedings, Boston.Beck, L. et al. In NIM 269, 2011 and in Counterfeit coinage of the Holy Roman Empire in the 16th century: silvering process and archaeometallurgical replications, Archaeometallurgy in Europe III.Deraisme, A., Beck, L., Pilon, F. & Barrandon, J. N. A study of the silvering process of the Gallo-Roman coins forged during the third century AD. Archaeometry 48, 469–480 (2006).Giumlia-Mair, A. On surface analysis and archaeometallurgy. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 239, 35–43 (2005).Tate, J. Some problems in analysing museum material by nondestructive surface sensitive techniques. Nuclear Inst. and Methods in Physics Research, B, 14 (1), pp. 20–23 (1986).Beck, L., Bosonnet, S., RĂ©veillon, S., Eliot, D. & Pilon, F. Silver surface enrichment of silver-copper alloys: A limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 226, 153–162 (2004).Pardini, L. et al. X-ray fluorescence and laser-induced breakdown spectroscopy analysis of Roman silver denarii. Spectrochim. Acta - Part B At. Spectrosc. 74–75, 156–161 (2012).KlockenkĂ€mper, R., Bubert, H. & Hasler, K. Detection of near-surface silver enrichment on Roman imperial silver coins by x-ray spectral analysis. Archaeometry 41, 311–320 (1999).Ponting, M., Evans, J. A. & Pashley, V. Fingerprinting of roman mints using laser-amblation MC-ICP-MS lead isotope analysis.Del Hoyo-MelĂ©ndez, J. M. et al. Micro-XRF analysis of silver coins from medieval Poland. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 349, 6–16 (2015).Cesare Brandi. Il restauro. Teoria e pratica (1939–1986). (Editori Riuniti, 2009).Barberio, M., Veltri, S., ScisciĂČ, M. & Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Sci. Rep. 7, 40415 (2017).Linke, R., Sehreiner, M., Demortier, G., Alram, M. & Winter, H. Non-Destructive Microanalysis of Cultural Heritage Materials. Comprehensive Analytical Chemistry 42, (Elsevier, 2004).Ɓojewska, J. et al. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Sci. Rep. 7, 46236 (2017).Meulebroeck, W., Wouters, H., Nys, K. & Thienpont, H. Authenticity screening of stained glass windows using optical spectroscopy. Nat. Sci. Reports 6 37726, 1–10 (2016).Martina, I., Wiesinger, R. & Schreiner, M. Micro-Raman Characterisation of Silver Corrosion Products: Instrumental Set Up and Reference. e-Preservation. Sci. Rep 9, 1–8 (2012).Rizzo, F. et al. Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A. D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchem. J. 97, 286–290 (2011).Carl, M. & Young, M. L. Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchem. J. 126, 307–315 (2016).CepriĂĄ, G., AbadĂ­as, O., PĂ©rez-Arantegui, J. & Castillo, J. R. Electrochemical Behavior of Silver-Copper Alloys in Voltammetry of Microparticles: A Simple Method for Screening Purposes. Electroanalysis 13, 477–483 (2001).Capelo, S., Homem, P. M., Cavalheiro, J. & Fonseca, I. T. E. Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J. Solid State Electrochem. 17, 223–234 (2013).DomĂ©nech-CarbĂł, A. et al. Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Sci. Int. 247, 79–88 (2015).DomĂ©nech-CarbĂł, A., DomĂ©nech-CarbĂł, M. T. & PeirĂł-Ronda, M. A. ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis 23, 1391–1400 (2011).DomĂ©nech-CarbĂł, A., DomĂ©nech-CarbĂł, M. T., Montagna, E., Álvarez-Romero, C. & Lee, Y. Electrochemical discrimination of mints: The last Chinese emperors Kuang HsĂŒ and HsĂŒan T’ung monetary unification. Talanta1 69, 50–56 (2017).Ager, F. J. et al. Combining XRF and GRT for the analysis of ancient silver coins. Microchem. J. 126, 149–154 (2016).Fawcett, T., Blanton, J., Blanton, T., Arias, L. & Suscavage, T. Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century. Powder Diffraction, 1–10.Salvemini, F. et al. Neutron tomographic analysis: Material characterization of silver and electrum coins from the 6th and 5th centuries B.C. Mater. Charact. 118, 175–185 (2016).Ashkenazi, D., Gitler, H., Stern, A. & Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 7, 40659 (2017).Romano, F. P., Garraffo, S., Pappalardo, L. & Rizzo, F. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques. Spectrochim. Acta - Part B At. Spectrosc. 73, 13–19 (2012).Ingo, G. M. et al. Ancient Mercury-Based Plating Methods: Combined Use of Surface Analytical Techniques for the Study of Manufacturing Process and Degradation Phenomena. Accounts of Chemical Research 46(11), 2365–2375.Pouchou, J. L. & Pichoir, F.šPAPš (ϕ–ρ–Z) procedure for improved quantitative microanalysis, in: Armstrong, J. T. (Ed.), Microbeam Analysis, San Francisco Press, San Francisco, pp. 104–106 (1985)

    Hyper-IgG4 disease: report and characterisation of a new disease

    Get PDF
    BACKGROUND: We highlight a chronic inflammatory disease we call 'hyper-IgG4 disease', which has many synonyms depending on the organ involved, the country of origin and the year of the report. It is characterized histologically by a lymphoplasmacytic inflammation with IgG4-positive cells and exuberant fibrosis, which leaves dense fibrosis on resolution. A typical example is idiopathic retroperitoneal fibrosis, but the initial report in 2001 was of sclerosing pancreatitis. METHODS: We report an index case with fever and severe systemic disease. We have also reviewed the histology of 11 further patients with idiopathic retroperitoneal fibrosis for evidence of IgG4-expressing plasma cells, and examined a wide range of other inflammatory conditions and fibrotic diseases as organ-specific controls. We have reviewed the published literature for disease associations with idiopathic, systemic fibrosing conditions and the synonyms: pseudotumour, myofibroblastic tumour, plasma cell granuloma, systemic fibrosis, xanthofibrogranulomatosis, and multifocal fibrosclerosis. RESULTS: Histology from all 12 patients showed, to varying degrees, fibrosis, intense inflammatory cell infiltration with lymphocytes, plasma cells, scattered neutrophils, and sometimes eosinophilic aggregates, with venulitis and obliterative arteritis. The majority of lymphocytes were T cells that expressed CD8 and CD4, with scattered B-cell-rich small lymphoid follicles. In all cases, there was a significant increase in IgG4-positive plasma cells compared with controls. In two cases, biopsies before and after steroid treatment were available, and only scattered plasma cells were seen after treatment, none of them expressing IgG4. Review of the literature shows that although pathology commonly appears confined to one organ, patients can have systemic symptoms and fever. In the active period, there is an acute phase response with a high serum concentration of IgG, and during this phase, there is a rapid clinical response to glucocorticoid steroid treatment. CONCLUSION: We believe that hyper-IgG4 disease is an important condition to recognise, as the diagnosis can be readily verified and the outcome with treatment is very good
    • 

    corecore