596 research outputs found

    Environmental chemicals targeting thyroid

    Get PDF
    Thyroid hormones (THs) are required for normal brain and somatic development and for the proper regulation of physiology in both children and adults. Thyroid function is controlled by the dynamic interrelationships between the hypothalamus, the pituitary and the thyroid. These dynamic relationships maintain circulating levels of THs within a narrow range under normal conditions. Normally, there is likely to be a tight relationship between changes in circulating levels of THs and changes in TH action in various target tissues. This relationship is maintained by tissue-level mechanisms that include TH metabolism and transport. Environmental chemicals that interfere with TH signaling mechanisms (Endocrine Disrupting Chemicals, EDCs) may produce adverse effects both in the individual and in a population. Because of the complex nature of the regulation of thyroid function and TH action, the consequences of EDC exposure is also likely to be complex and our ability to understand these effects as well as to screen for potential EDCs must consider this complexity. Specifically, if there are chemicals in the environment that directly interfere with TH action through their receptors but do not affect circulating TH levels, they would not be identified as thyroid toxicants by currently applied screening methods or by epidemiological studies. The goal of this review is therefore to identify the issues that must be clearly resolved before effective risk assessment can be performed

    Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering

    Get PDF
    Background: Many important high throughput projects use in situ hybridization and may require the analysis of images of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in heterogeneous tissue. Results: We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping expression images to anatomical annotations and a method for extracting expression information within an anatomical region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we relate clustered patterns to Gene Ontology (GO) annotations. Conclusion: Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such as the Allen Brain Atlas [1] and the Max-Planck Institute [2] using our method. While we focus here on imagery and experiments of the mouse brain our approach should be applicable to a variety of in situ experiments

    Evaluation of the U.S. EPA/OSWER Preliminary Remediation Goal for Perchlorate in Groundwater: Focus on Exposure to Nursing Infants

    Get PDF
    BACKGROUND: Perchlorate is a common contaminant of drinking water and food. It competes with iodide for uptake into the thyroid, thus interfering with thyroid hormone production. The U.S. Environmental Protection Agency’s Office of Solid Waste and Emergency Response (OSWER) set a groundwater preliminary remediation goal (PRG) of 24.5 μg/L to prevent exposure of pregnant women that would affect the fetus. This does not account for the greater exposure that is possible in nursing infants or for the relative source contribution (RSC), a factor normally used to lower the PRG due to nonwater exposures. OBJECTIVES: Our goal was to assess whether the OSWER PRG protects infants against exposures from breast-feeding, and to evaluate the perchlorate RSC. METHODS: We used Monte Carlo analysis to simulate nursing infant exposures associated with the OSWER PRG when combined with background perchlorate. RESULTS: The PRG can lead to a 7-fold increase in breast milk concentration, causing 90% of nursing infants to exceed the reference dose (RfD) (average exceedance, 2.8-fold). Drinking-water perchlorate must be < 6.9 μg/L to keep the median, and < 1.3 μg/L to keep the 90th-percentile nursing infant exposure below the RfD. This is 3.6- to 19-fold below the PRG. Analysis of biomonitoring data suggests an RSC of 0.7 for pregnant women and of 0.2 for nursing infants. Recent data from the Centers for Disease Control and Prevention (CDC) suggest that the RfD itself needs to be reevaluated because of hormonal effects in the general population. CONCLUSIONS: The OSWER PRG for perchlorate can be improved by considering infant exposures, by incorporating an RSC, and by being responsive to any changes in the RfD resulting from the new CDC data

    A Clash of Old and New Scientific Concepts in Toxicity, with Important Implications for Public Health

    Get PDF
    Background A core assumption of current toxicologic procedures used to establish health standards for chemical exposures is that testing the safety of chemicals at high doses can be used to predict the effects of low-dose exposures, such as those common in the general population. This assumption is based on the precept that “the dose makes the poison”: higher doses will cause greater effects. Objectives We challenge the validity of assuming that high-dose testing can be used to predict low-dose effects for contaminants that behave like hormones. We review data from endocrinology and toxicology that falsify this assumption and summarize current mechanistic understanding of how low doses can lead to effects unpredictable from high-dose experiments. Discussion Falsification of this assumption raises profound issues for regulatory toxicology. Many exposure standards are based on this assumption. Rejecting the assumption will require that these standards be reevaluated and that procedures employed to set health standards be changed. The consequences of these changes may be significant for public health because of the range of health conditions now plausibly linked to exposure to endocrine-disrupting contaminants. Conclusions We recommend that procedures to establish acceptable exposure levels for endocrine-disrupting compounds incorporate the inability for high-dose tests to predict low-dose results. Setting acceptable levels of exposure must include testing for health consequences at prevalent levels of human exposure, not extrapolations from the effects observed in high-dose experiments. Scientists trained in endocrinology must be engaged systematically in standard setting for endocrine-disrupting compounds

    Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine Disrupting Substances in the European Union

    Get PDF
    Background: Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. Objectives: We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Discussion: Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose–response function) is combined with exposure levels. Conclusions: There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Citation: Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant to setting regulatory criteria to identify endocrine disrupting substances in the European Union. Environ Health Perspect 124:1497–1503; http://dx.doi. org/10.1289/EHP21

    Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action

    Get PDF
    This work tests the mode-of-action (MOA) hypothesis that maternal and developmental triclosan (TCS) exposure decreases circulating thyroxine (T4) concentrations via up-regulation of hepatic catabolism and elimination of T4. Time-pregnant Long-Evans rats received TCS po (0–300 mg/kg/day) from gestational day (GD) 6 through postnatal day (PND) 21. Serum and liver were collected from dams (GD20, PND22) and offspring (GD20, PND4, PND14, PND21). Serum T4, triiodothyronine (T3), and thyroid stimulating hormone (TSH) concentrations were measured by radioimmunoassay. Ethoxy-O-deethylase (EROD), pentoxyresorufin-O-depentylase (PROD) and uridine diphosphate glucuronyltransferase (UGT) enzyme activities were measured in liver microsomes. Custom Taqman® qPCR arrays were employed to measure hepatic mRNA expression of select cytochrome P450s, UGTs, sulfotransferases, transporters, and thyroid-hormone responsive genes. TCS was quantified by LC/MS/MS in serum and liver. Serum T4 decreased approximately 30% in GD20 dams and fetuses, PND4 pups and PND22 dams (300 mg/kg/day). Hepatic PROD activity increased 2- to 3-fold in PND4 pups and PND22 dams, and UGT activity was 1.5-fold higher in PND22 dams only (300 mg/kg/day). Minor up-regulation of Cyp2b and Cyp3a expression in dams was consistent with hypothesized activation of the constitutive androstane and/or pregnane X receptor. T4 reductions of 30% for dams and GD20 and PND4 offspring with concomitant increases in PROD (PND4 neonates and PND22 dams) and UGT activity (PND22 dams) suggest that up-regulated hepatic catabolism may contribute to TCS–induced hypothyroxinemia during development. Serum and liver TCS concentrations demonstrated greater fetal than postnatal internal exposure, consistent with the lack of T4 changes in PND14 and PND21 offspring. These data support the MOA hypothesis that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism; however, the minor effects on thyroid hormone metabolism may reflect the low efficacy of TCS as thyroid hormone disruptor or highlight the possibility that other MOAs may also contribute to the observed maternal and early neonatal hypothyroxinemia
    corecore