780 research outputs found
Nanowire Acting as a Superconducting Quantum Interference Device
We present the results from an experimental study of the magneto-transport of
superconducting wires of amorphous Indium-Oxide, having widths in the range 40
- 120 nm. We find that, below the superconducting transition temperature, the
wires exhibit clear, reproducible, oscillations in their resistance as a
function of magnetic field. The oscillations are reminiscent of those which
underlie the operation of a superconducting quantum interference device.Comment: 4 pages, 4 figures, 1 tabl
Ion beam effect on Ge-Se chalcogenide glass films: Non-volatile memory array formation, structural changes and device performance
The conductive bridge non-volatile memory technology is an emerging way to
replace traditional charge based memory devices for future neural networks and
configurable logic applications. An array of the memory devices that fulfills
logic operations must be developed for implementing such architectures. A
scheme to fabricate these arrays, using ion bombardment through a mask, has
been suggested and advanced by us. Performance of the memory devices is
studied, based on the formation of vias and damage accumulation due to the
interactions of Ar+ ions with GexSe1-x (x=0.2, 0.3 and 0.4) chalcogenide
glasses as a function of the ion energy and dose dependence. Blanket films and
devices were created to study the structural changes, surface roughness, and
device performance. Raman Spectroscopy, Atomic Force Microscopy (AFM), Energy
Dispersive X-Ray Spectroscopy (EDS) and electrical measurements expound the Ar+
ions behavior on thin films of GexSe1-x system. Raman studies show that there
is a decrease in area ratio between edge-shared to corner-shared structural
units, revealing occurrence of structural reorganization within the system as a
result of ion/film interaction. AFM results demonstrate a tendency in surface
roughness improvement with increased Ge concentration, after ion bombardment.
EDS results reveal a compositional change in the vias, with a clear tendency of
greater interaction between ions and the Ge atoms, as evidenced by greater
compositional changes in the Ge rich films
Nanotube Piezoelectricity
We combine ab initio, tight-binding methods and analytical theory to study
piezoelectric effect of boron nitride nanotubes. We find that piezoelectricity
of a heteropolar nanotube depends on its chirality and diameter and can be
understood starting from the piezoelectric response of an isolated planar
sheet, along with a structure specific mapping from the sheet onto the tube
surface. We demonstrate that coupling between the uniaxial and shear
deformation are only allowed in the nanotubes with lower chiral symmetry. Our
study shows that piezoelectricity of nanotubes is fundamentally different from
its counterpart in three dimensional (3D) bulk materials.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX4 macros.
Also available at
http://www.physics.upenn.edu/~nsai/preprints/bn_piezo/index.htm
Dynamics of Bulk vs. Nanoscale WS_2: Local Strain and Charging Effects
We measured the infrared vibrational properties of bulk and nanoparticle
WS in order to investigate the structure-property relations in these novel
materials. In addition to the symmetry-breaking effects of local strain,
nanoparticle curvature modifies the local charging environment of the bulk
material. Performing a charge analysis on the \emph{xy}-polarized E
vibrational mode, we find an approximate 1.5:1 intralayer charge difference
between the layered 2H material and inorganic fullerene-like (IF)
nanoparticles. This effective charge difference may impact the solid-state
lubrication properties of nanoscale metal dichalcogenides.Comment: 6 pages, 5 figure
A low-dimensional spin S = 1/2 system at the quantum critical limit: Na2V2O7
We report the results of measurements of the dc-susceptibility and the
23Na-NMR response of Na2V2O7, a recently synthesized, non metallic low
dimensional spin system. Our results indicate that upon reducing the
temperature to below 100 K, the V^{4+} moments are gradually quenched, leaving
only one moment out of 9 active. The NMR data reveal a phase transition at very
low temperatures. With decreasing applied field H, the critical temperature
shifts towards T = 0 K, suggesting that Na2V2O7 may be regarded as an insulator
reaching a quantum critical point at H = 0.Comment: 4 pages, 5 figure
A Raman study of the Charge-Density-Wave State in AMoO (A = K,Rb)
We report a comparative Raman spectroscopic study of the
quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The
temperature and polarization dependent experiments reveal charge-coupled
vibrational Raman features. The strongly temperature-dependent collective
amplitudon mode in both materials differ by about 3 cm, thus revealing the role
of alkali atom. We discus the observed vibrational features in terms of
charge-density-wave ground state accompanied by change in the crystal symmetry.
A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports
the first-order lock-in transition, unlike \rb. The unusually sharp Raman
lines(limited by the instrumental response) at very low temperatures and their
temperature evolution suggests that the decay of the low energy phonons is
strongly influenced by the presence of the temperature dependent charge density
wave gap.Comment: 13 pages, 7 figure
Ferroelectric Phase Transitions in Three-Component Short-Period Superlattices Studied by Ultraviolet Raman Spectroscopy
Vibrational spectra of three-component BaTiO3SrTiO3CaTiO3 short-period superlattices grown by pulsed laser deposition with atomic-layer control have been investigated by ultraviolet Raman spectroscopy. Monitoring the intensity of the first-order phonon peaks in Raman spectra as a function of temperature allowed determination of the ferroelectric phase transition temperature, Tc. Raman spectra indicate that all superlattices remain in the tetragonal ferroelectric phase with out-of-plane polarization in the entire temperature range below Tc. The dependence of Tc on the relative thicknesses of ferroelectric (BaTiO3) to non-ferroelectric materials (SrTiO3 and CaTiO3) has been studied. The highest Tc was found in superlattices having the largest relative amount of BaTiO3, provided that the superlattice maintains its coherency with the substrate. Strain relaxation leads to a significant decrease in the ferroelectric phase transition temperature
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Phase behavior and material properties of hollow nanoparticles
Effective pair potentials for hollow nanoparticles like the ones made from
carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of
a hard core repulsion and a deep, but short-ranged, van der Waals attraction.
We investigate them for single- and multi-walled nanoparticles and show that in
both cases, in the limit of large radii the interaction range scales inversely
with the radius, , while the well depth scales linearly with . We predict
the values of the radius and the wall thickness at which the gas-liquid
coexistence disappears from the phase diagram. We also discuss unusual material
properties of the solid, which include a large heat of sublimation and a small
surface energy.Comment: Revtex, 13 pages with 8 Postscript files included, submitted to Phys.
Rev.
- …
