4,291 research outputs found

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Fabrication of CaO-NaO-SiO2/TiO2 Scaffolds for Surgical Applications

    Get PDF
    A series of titanium (Ti) based glasses were formulated (0.62 SiO2-0.14 Na2O-0.24 CaO, with 0.05 mol% TiO2 substitutions for SiO2) to develop glass/ceramic scaffolds for bone augmentation. Glasses were initially characterised using X-ray diffraction (XRD) and particle size analysis, where the starting materials were amorphous with 4.5 μm particles. Hot stage microscopy and high temperature XRD were used to determine the sintering temperature (̃700 °C) and any crystalline phases present in this region (Na2Ca3Si6O16, combeite and quartz). Hardness testing revealed that the Ti-free control (ScC- 2.4 GPa) had a significantly lower hardness than the Ti-containing materials (Sc1 and Sc2 ̃6.6 GPa). Optical microscopy determined pore sizes ranging from 544 to 955 lm. X-ray microtomography calculated porosity from 87 to 93 % and surface area measurements ranging from 2.5 to 3.3 SA/mm3. Cytotoxicity testing (using mesenchymal stem cells) revealed that all materials encouraged cell proliferation, particularly the higher Ti-containing scaffolds over 24-72 h. © Springer Science+Business Media, LLC 2012

    Biocompatibility of CaO-Na2O-SiO2/TiO2 Glass Ceramic Scaffolds for Orthopaedic Applications

    Get PDF
    This work aims to determine the effect of substituting TiO2 for SiO2 in a 0.62SiO2-Na2O-0.24CaO based glass-ceramic scaffold. High temperature X-ray Diffraction (HT-XRD) was used to determine the sintering temperature (700oC). Both optical microscopy and x-ray micotomography was used to determine the average pore size (540-680ìm) of each scaffold. Cytocompatibility of each scaffold was conducted using murine mesenchymal stem cells. © 2013 IEEE

    Chaos and Noise in a Truncated Toda Potential

    Full text link
    Results are reported from a numerical investigation of orbits in a truncated Toda potential which is perturbed by weak friction and noise. Two significant conclusions are shown to emerge: (1) Despite other nontrivial behaviour, configuration, velocity, and energy space moments associated with these perturbations exhibit a simple scaling in the amplitude of the friction and noise. (2) Even very weak friction and noise can induce an extrinsic diffusion through cantori on a time scale much shorter than that associated with intrinsic diffusion in the unperturbed system.Comment: 10 pages uuencoded PostScript (figures included), (A trivial mathematical error leading to an erroneous conclusion is corrected

    Incipient Resistance of Helicoverpa punctigera to the Cry2Ab Bt Toxin in Bollgard II® Cotton

    Get PDF
    Combinations of dissimilar insecticidal proteins (“pyramids”) within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt) transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not ‘bullet proof’ and that rapid evolution to Bt toxins in the Cry2 class is possible

    Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy

    Get PDF
    Laser transmission spectroscopy (LTS) is a quantitative and rapid in vitro technique for measuring the size, shape, and number of nanoparticles in suspension. Here we report on the application of LTS as a novel detection method for species-specific DNA where the presence of one invasive species was differentiated from a closely related invasive sister species. The method employs carboxylated polystyrene nanoparticles functionalized with short DNA fragments that are complimentary to a specific target DNA sequence. In solution, the DNA strands containing targets bind to the tags resulting in a sizable increase in the nanoparticle diameter, which is rapidly and quantitatively measured using LTS. DNA strands that do not contain the target sequence do not bind and produce no size change of the carboxylated beads. The results show that LTS has the potential to become a quantitative and rapid DNA detection method suitable for many real-world applications

    Novel Composites for Wing and Fuselage Applications

    Get PDF
    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor
    corecore