3,161 research outputs found

    Search for a simultaneous signal from small transient events in the Pierre Auger Observatory and the Tupi muon telescopes

    Full text link
    We present results of a search for a possible signal from small scale solar transient events (such as flares and interplanetary shocks) as well as possible counterparts to Gamma-Ray Burst (GRB) observed simultaneously by the Tupi muon telescope Niteroi-Brazil, 22.90S, 43.20W, 3 m above sea level) and the Pierre Auger Observatory surface detectors (Malargue-Argentina, 69.30S, 35.30W, altitude 1400 m). Both cosmic ray experiments are located inside the South Atlantic Anomaly (SAA) region. Our analysis of several examples shows similarities in the behavior of the counting rate of low energy (above 100 MeV) particles in association with the solar activity (solar flares and interplanetary shocks). We also report an observation by the Tupi experiment of the enhancement of muons at ground level with a significance higher than 8 sigma in the 1-sec binning counting rate (raw data) in close time coincidence (T-184 sec) with the Swift-BAT GRB110928B (trigger=504307). The GRB 110928B coordinates are in the field of view of the vertical Tupi telescope, and the burst was close to the MAXI source J1836-194. The 5-min muon counting rate in the vertical Tupi telescope as well as publicly available data from Auger (15 minutes averages of the scaler rates) show small peaks above the background fluctuations at the time following the Swift-BAT GRB 110928B trigger. In accordance with the long duration trigger, this signal can possibly suggest a long GRB, with a precursor narrow peak at T-184 sec.Comment: 9 pages, 13 figure

    Coulomb Drag near the metal-insulator transition in two-dimensions

    Full text link
    We studied the drag resistivity between dilute two-dimensional hole systems, near the apparent metal-insulator transition. We find the deviations from the T2T^{2} dependence of the drag to be independent of layer spacing and correlated with the metalliclike behavior in the single layer resistivity, suggesting they both arise from the same origin. In addition, layer spacing dependence measurements suggest that while the screening properties of the system remain relatively independent of temperature, they weaken significantly as the carrier density is reduced. Finally, we demonstrate that the drag itself significantly enhances the metallic TT dependence in the single layer resistivity.Comment: 6 pages, 5 figures; revisions to text, to appear in Phys. Rev.

    Zener Tunneling Between Landau Orbits in a High-Mobility Two-Dimensional Electron Gas

    Full text link
    Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs-AlGa0.3_{0.3}As0.7_{0.7} heterostructures, and can be well explained by the Zener mechanism.Comment: 5 pages, 4 figures. Text slightly shortened, figures resize

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.

    Universality at integer quantum Hall transitions

    Full text link
    We report in this paper results of experimental and theoretical studies of transitions between different integer quantum Hall phases, as well as transition between the insulating phase and quantum Hall phases at high magnetic fields. We focus mainly on universal properties of the transitions. We demonstrate that properly defined conductivity tensor is universal at the transitions. We also present numerical results of a non-interacting electron model, which suggest that the Thouless conductance is universal at integer quantum Hall transitions, just like the conductivity tensor. Finite temperature and system size effects near the transition point are also studied.Comment: 20 pages, 15 figure

    Reorientation of Anisotropy in a Square Well Quantum Hall Sample

    Full text link
    We have measured magnetotransport at half-filled high Landau levels in a quantum well with two occupied electric subbands. We find resistivities that are {\em isotropic} in perpendicular magnetic field but become strongly {\em anisotropic} at ν\nu = 9/2 and 11/2 on tilting the field. The anisotropy appears at an in-plane field, BipB_{ip} \sim 2.5T, with the easy-current direction {\em parallel} to BipB_{ip} but rotates by 90^{\circ} at BipB_{ip} \sim 10T and points now in the same direction as in single-subband samples. This complex behavior is in quantitative agreement with theoretical calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure

    Transition from an electron solid to the sequence of fractional quantum Hall states at very low Landau level filling factor

    Full text link
    At low Landau level filling of a two-dimensional electron system, typically associated with the formation of an electron crystal, we observe local minima in Rxx at filling factors nu=2/11, 3/17, 3/19, 2/13, 1/7, 2/15, 2/17, and 1/9. Each of these developing fractional quantum Hall (FQHE) states appears only above a filling factor-specific temperature. This can be interpreted as the melting of an electron crystal and subsequent FQHE liquid formation. The observed sequence of FQHE states follow the series of composite fermion states emanating from nu=1/6 and nu=1/8

    Fractional Quantum Hall States in Narrow Channels

    Full text link
    A model system is considered where two dimensional electrons are confined by a harmonic potential in one direction, and are free in the other direction. Ground state in strong magnetic fields is investigated through numerical diagonalization of the Hamiltonian. It is shown that the fractional quantum Hall states are realized even in the presence of the external potential under suitable conditions, and a phase diagram is obtained.Comment: 8 pages, 2 figures (not included

    A Fermi Fluid Description of the Half-Filled Landau Level

    Full text link
    We present a many-body approach to calculate the ground state properties of a system of electrons in a half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma analogy, we calculate the pair-correlation function, the static structure function and the ground state energy in the thermodynamic limit. These results are in good agreement with the expected behavior at ν=12\nu=\frac12.Comment: 4 pages, REVTEX, and 4 .ps file

    Theory of Incompressible States in a Narrow Channel

    Full text link
    We report on the properties of a system of interacting electrons in a narrow channel in the quantum Hall effect regime. It is shown that an increase in the strength of the Coulomb interaction causes abrupt changes in the width of the charge-density profile of translationally invariant states. We derive a phase diagram which includes many of the stable odd-denominator states as well as a novel fractional quantum Hall state at lowest half-filled Landau level. The collective mode evaluated at the half-filled case is strikingly similar to that for an odd-denominator fractional quantum Hall state.Comment: 4 pages, REVTEX, and 4 .ps file
    corecore