2,279,221 research outputs found

    Exact Solution for Relativistic Two-Body Motion in Dilaton Gravity

    Get PDF
    We present an exact solution to the problem of the relativistic motion of 2 point masses in (1+1)(1+1) dimensional dilaton gravity. The motion of the bodies is governed entirely by their mutual gravitational influence, and the spacetime metric is likewise fully determined by their stress-energy. A Newtonian limit exists, and there is a static gravitational potential. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: 6 pages, latex, 3 figure

    Intermediate phase of the one dimensional half-filled Hubbard-Holstein model

    Get PDF
    We present a detailed numerical study of the Hubbard-Holstein model in one dimension at half filling, including full finite-frequency quantum phonons. At half filling, the effects of the electron-phonon and electron-electron interactions compete, with the Holstein phonon coupling acting as an effective negative Hubbard onsite interaction U that promotes on-site electron pairs and a Peierls charge-density wave state. Most previous work on this model has assumed that only Peierls or U>0 Mott insulator phases are possible at half filling. However, there has been speculation that a third metallic phase exists between the Peierls and Mott phases. We present results confirming the intermediate metallic phase, and show that the Luttinger liquid correlation exponent K_rho>1 in this region, indicating dominant superconducting pair correlations. We explore the full phase diagram as a function of onsite Hubbard U, phonon coupling constant, and phonon frequency.Comment: 4 pages, 4 EPS figures. v2: typos corrected. To appear in Phys. Rev. Let

    Metal matrix composite structural panel construction

    Get PDF
    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells

    Non-homogeneous polygonal Markov fields in the plane: graphical representations and geometry of higher order correlations

    Full text link
    We consider polygonal Markov fields originally introduced by Arak and Surgailis (1989). Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of features with the two-dimensional Ising model. We introduce non-homogeneous version of polygonal fields in anisotropic enviroment. For these fields we provide a class of new graphical constructions and random dynamics. These include a generalised dynamic representation, generalised and defective disagreement loop dynamics as well as a generalised contour birth and death dynamics. Next, we use these constructions as tools to obtain new exact results on the geometry of higher order correlations of polygonal Markov fields in their consistent regime.Comment: 54 page
    corecore