1,019 research outputs found

    Building a Socio-technical Perspective of Community Resilience with a Semiotic Approach

    Get PDF
    Situated in the diversity and adversity of real-life contexts facing crisis situations, this research aims at boosting the resilience process within communities supported by digital and social technology. In this paper, eight community leaders in different parts of the world are invited to express their issues and wishes regarding the support of technology to face social challenges. Methods and artefacts based on the Organisational Semiotics (OS) and the Socially-Aware computing have been applied to analyse and consolidate this data. By providing both a systemic view of the problem and also leading to the identification of requirements, the analysis evidences some benefits of the OS-based approach to consolidate perspectives from different real-life scenarios towards building a socio-technical solution

    Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy

    Get PDF
    Background\ud \ud Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud Results\ud \ud By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud Conclusions\ud \ud We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud Reviewers\ud \ud This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel

    Kinetic theory and dynamic structure factor of a condensate in the random phase approximation

    Full text link
    We present the microscopic kinetic theory of a homogeneous dilute Bose condensed gas in the generalized random phase approximation (GRPA), which satisfies the following requirements: 1) the mass, momentum and energy conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the recovery of the Bogoliubov theory at zero temperature \cite{condenson}. In this approach, the condensate influences the binary collisional process between the two normal atoms, in the sense that their interaction force results from the mediation of a Bogoliubov collective excitation traveling throughout the condensate. Furthermore, as long as the Bose gas is stable, no collision happens between condensed and normal atoms. In this paper, we show how the kinetic theory in the GRPA allows to calculate the dynamic structure factor at finite temperature and when the normal and superfluid are in a relative motion. The obtained spectrum for this factor provides a prediction which, compared to the experimental results, allows to validate the GRPA. PACS numbers:03.75.Hh, 03.75.Kk, 05.30.-dComment: 6 pages, 1 figures, QFS2004 conferenc

    Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate

    Full text link
    Helical spin textures in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. This evolution is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. This is confirmed by eliminating the dipolar interactions by a sequence of rf pulses and observing a suppression of the formation of the short-range domains. This study confirms the significance of magnetic dipole interactions in degenerate 87^{87}Rb F=1 spinor gases

    Dispersion management using betatron resonances in an ultracold-atom storage ring

    Full text link
    Specific velocities of particles circulating in a storage ring can lead to betatron resonances at which static perturbations of the particles' orbit yield large transverse (betatron) oscillations. We have observed betatron resonances in an ultracold-atom storage ring by direct observation of betatron motion. These resonances caused a near-elimination of the longitudinal dispersion of atomic beams propagating at resonant velocities, an effect which can improve the performance of atom interferometric devices. Both the resonant velocities and the strength of the resonances were varied by deliberate modifications to the storage ring.Comment: 4 pages, 5 figures. Also available at http://physics.berkeley.edu/research/ultracol

    Coherence-enhanced imaging of a degenerate Bose gas

    Full text link
    We present coherence-enhanced imaging, an in situ technique that uses Raman superradiance to probe the spatial coherence properties of an ultracold gas. Applying this method, we obtain a spatially resolved measurement of the condensate number and more generally, of the first-order spatial correlation function in a gas of 87^{87}Rb atoms. We observe the enhanced decay of propagating spin gratings in high density regions of a Bose condensate, a decay we ascribe to collective, non-linear atom-atom scattering. Further, we directly observe spatial inhomogeneities that arise generally in the course of extended sample superradiance.Comment: 4 pages, 4 figure
    • …
    corecore