8,218 research outputs found

    Information-entropic analysis of Korteweg--de Vries solitons in the quark-gluon plasma

    Full text link
    Solitary waves propagation of baryonic density perturbations, ruled by the Korteweg--de Vries equation in a mean-field quark-gluon plasma model, are investigated from the point of view of the theory of information. A recently proposed continuous logarithmic measure of information, called configurational entropy, is used to derive the soliton width, defining the pulse, for which the informational content of the soliton spatial profile is more compressed, in the Shannon's sense.Comment: 6 pages, 1 figur

    Black string corrections in variable tension braneworld scenarios

    Full text link
    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eotvos branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, what is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenarioComment: 12 pages, 5 figures, accepted in PR

    The extended minimal geometric deformation of SU(NN) dark glueball condensates

    Full text link
    The extended minimal geometric deformation (EMGD) procedure, in the holographic membrane paradigm, is employed to model stellar distributions that arise upon self-interacting scalar glueball dark matter condensation. Such scalar glueballs are SU(NN) Yang-Mills hidden sectors beyond the Standard Model. Then, corrections to the gravitational wave radiation, emitted by SU(NN) EMGD dark glueball stars mergers, are derived, and their respective spectra are studied in the EMGD framework, due to a phenomenological brane tension with finite value. The bulk Weyl fluid that drives the EMGD is then proposed to be experimentally detected by enhanced windows at the eLISA and LIGO.Comment: 9 pages, 7 figure

    Opening the Pandora's box of quantum spinor fields

    Full text link
    Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes.Comment: 18 page

    Extended quantum portrait of MGD black holes and information entropy

    Full text link
    The extended minimal geometric deformation (EMGD) is employed on the fluid membrane paradigm, to describe compact stellar objects as Bose--Einstein condensates (BEC) consisting of gravitons. The black hole quantum portrait, besides deriving a preciser phenomenological bound for the fluid brane tension, is then scrutinized from the point of view of the configurational entropy. It yields a range for the critical density of the EMGD BEC, whose configurational entropy has global minima suggesting the configurational stability of the EMGD BEC.Comment: 9 pages, 7 figures, matches the published versio

    Homogeneous abundance analysis of dwarf, subgiant and giant FGK stars with and without giant planets

    Full text link
    We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths of Fe I and Fe II lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2, CN, C I, O I, and Na I features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhibit underabundance in [C/Fe] and overabundance in [N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally attributed to evolution-induced mixing processes in the envelope of evolved stars; ii) for solar analogs only, the abundance trends with the condensation temperature of the elements are correlated with age and anticorrelated with the surface gravity, which is in agreement with recent studies; iii) as in the case of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H] for all the analyzed elements, except for O and Ba (the former due to limitations of statistics), confirming previous findings in the literature that not only iron has an important relation with the planetary formation; and iv) giant planet hosts are also significantly overabundant for the same metallicity when the elements from Mg to Cu are combined together.Comment: 20 pages, 16 figures, 8 table

    Mimicking Nanoribbon Behavior Using a Graphene Layer on SiC

    Full text link
    We propose a natural way to create quantum-confined regions in graphene in a system that allows large-scale device integration. We show, using first-principles calculations, that a single graphene layer on a trenched region of [0001ˉ][000\bar{1}] SiCSiC mimics i)the energy bands around the Fermi level and ii) the magnetic properties of free-standing graphene nanoribbons. Depending on the trench direction, either zigzag or armchair nanoribbons are mimicked. This behavior occurs because a single graphene layer over a SiCSiC surface loses the graphene-like properties, which are restored solely over the trenches, providing in this way a confined strip region.Comment: 4 pages, 4 figure
    • …
    corecore