381 research outputs found

    Clutter Detection and Surface/Subsurface Slope Determination by Combination of Repeat-Pass Sounder Orbits Applied to SHARAD Data

    Get PDF
    Nadir-looking low-frequency radar sounders cannot easily resolve off-nadir surface returns from the subsurface nadir echoes. Cross-track surface echoes (also named "clutter ") with time delays synchronized with subsurface returns are renowned for being a major challenge for scientists, as they can affect the analysis of orbital radar sounders data. We present a method for clutter discrimination and surface/subsurface slope estimation using data acquired from radar sounders in closely spaced repeated orbits configuration. The method takes advantage of cross-track signal migration to discriminate off-nadir clutter from subsurface signal returns received at the nadir. The migration of the off-nadir signals is also used to determine the clutter direction of arrival (DOA) as well as the surface/subsurface cross-track slopes. The effectiveness of the method has been proven on the Mars Reconnaissance Orbiter (MRO)'s Shallow Radar (SHARAD) dataset and provides a proof-of-concept demonstration for the surface clutter discrimination when radar sounders repeated-passes data are available

    Liquid filled canyons on Titan

    Get PDF
    In May 2013 the Cassini RADAR altimeter observed channels in Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea, Ligeia Mare. Analysis of these altimeter echoes shows that the channels are located in deep (up to ~570 m), steep-sided, canyons and have strong specular surface reflections that indicate they are currently liquid filled. Elevations of the liquid in these channels are at the same level as Ligeia Mare to within a vertical precision of about 0.7 m, consistent with the interpretation of drowned river valleys. Specular reflections are also observed in lower order tributaries elevated above the level of Ligeia Mare, consistent with drainage feeding into the main channel system

    UWB processing applied to multifrequency radar sounders. The case of MARSIS and comparison with SHARAD

    Get PDF
    We readapt ultrawideband (UWB) processing to enhance the range resolution of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) up to a factor of 6 (25 m). The technique provides for the estimation of radar signature over a wider spectrum via the application of wellknown super-resolution (SR) techniques to adjoining subbands. The measured spectra are first interpolated and then extrapolated outside the original bands. The revised algorithm includes the estimation and removal of ionospheric effects impacting the two signals. Because the processing requires the realignment of the echoes at different frequencies, we derived the maximum tolerable retracking error to obtain reliable super-resolved range profiles. This condition is fulfilled by low-roughness areas compared to MARSIS wavelength, which proves to be suitable for the application of our processing. Examples of super-resolved experimental products over different geological scenarios show the detection of shallow dielectric interfaces not visible from original MARSIS products. Our results are validated by comparison with the Shallow Radar (SHARAD) data acquired at the crossovers, demonstrating the potential of the method to provide enhanced imaging capabilities

    Understanding the scale and nature of outcome change in area-regeneration programmes: evidence from the New Deal for Communities Programme in England

    Get PDF
    The New Deal for Communities (NDC) Programme is one of the most intensive area-based initiatives (ABIs) launched in England. Between 1998 and 2010, 39 NDC Partnerships were charged with improving conditions in relation to six outcomes within deprived neighbourhoods, each accommodating around 9,800 people. Data point to only modest change, much of which reflected improving attitudes towards the area and the environment. There are problems in identifying positive people-based outcomes because relatively few individuals benefit from relevant initiatives. Few positive benefits leak out of NDC areas. Transformational change was always unlikely bearing in mind the limited nature of additional resources, and because only a minority of individuals directly engage with NDC projects. This evidence supports perspectives of ABIs rooted in 'local-managerialism'

    Stuck in the slow lane: reconceptualising the links between gender, transport and social exclusion

    Get PDF
    This article draws upon primary research undertaken with over 3,000 women in the North East of England to explore the links between women, transport and the labour market. The research, funded by the ESF, advances the idea of spatiality as a social construction and builds on seminal studies relating to women and poverty to consider the way in which a gender division of transport constrains women's mobility and restricts their employment opportunities. It is likely to contribute to important debates, concerning strategies to tackle worklessness and the most effective spatial level at which to configure public transport networks

    Science results from sixteen years of MRO SHARAD operations

    Get PDF
    In operation for >16 years to date, the Mars Reconnaissance Orbiter (MRO) Shallow Radar (SHARAD) sounder has acquired data at its nominal 300–450 m along-track and 3-km cross-track resolution covering >55% of the Martian surface, with nearly 100% overlap in coverage at that scale in the polar regions and in a number of smaller mid-latitude areas. While SHARAD data have opened a new window into understanding the interior structures and properties of Martian ices, volcanics, and sedimentary deposits up to a few kilometers in depth, they have also led to new revelations about the deeper interior and the behavior of the planet’s ionosphere. Here we summarize the data collected by SHARAD over this time period, the methods used in the analysis of that data, and the resulting scientific findings. The polar data are especially rich, revealing complex structures that comprise up to several dozen reflecting interfaces that extend to depths of 3 km, which inform the evolution of Martian climate in the late Amazonian period. SHARAD observations of mid-latitude lobate debris aprons and other glacier-like landforms detect strong basal reflections and low dielectric loss, confirming that they are icerich debris-covered glaciers. In other mid-latitude terrains, SHARAD data demonstrate the presence of widespread ground ices, likely at lower concentrations. SHARAD signals also probe non-icy materials, mapping out stacked lava flows, probing low-density materials thought to be ash-fall deposits, and occasionally penetrating sedimentary deposits, all of which reveal the structures and interior properties diagnostic of emplacement processes. SHARAD signals are impacted by their passage through the Martian ionosphere, revealing variations in time and space of the total electron content linked with the remanent magnetic field. Advanced techniques developed over the course of the mission, which include subband and super-resolution processing, coherent and incoherent summing, and three-dimensional (3D) radar imaging, are enabling new discoveries and extending the utility of the data. For 3D imaging, a cross-track spacing at the nominal 3-km resolution is more than sufficient to achieve good results, but finer spacing of 0.5 km or less significantly improves the spatially interpolated radar images. Recent electromagnetic modeling and a flight test show that SHARAD’s signal-to-noise ratio can be greatly improved with a large (~120◦) roll of the spacecraft to reduce interference with the spacecraft body. Both MRO and SHARAD are in remarkably fine working order, and the teams look forward to many more years in which to pursue improvements in coverage density, temporal variability in the ionosphere, and data quality that promise exciting new discoveries at Mars

    Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: a summary

    Get PDF
    Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian–US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder,transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes.The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS)data are processed on board by stacking together a batch of echoes acquired at the same frequency. Onground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS)data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one.The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could successfully operate at Phobos, becoming the first instrument of its kind to observe an asteroid-like body. The main goal pursued by MARSIS, the search for liquid water beneath the surface, remains elusive. However, because of the many factors affecting detection and of the difficulties in identifying water in radar echoes, a definitive conclusion on its presence cannot yet be drawn

    Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars

    Get PDF
    The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155◦ E and east MFF between 209 and 213◦ E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ∼3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD dat

    Momentum transfer resolved memory in a magnetic system with perpendicular anisotropy

    Full text link
    We have used resonant, coherent soft x-ray scattering to measure wave vector re- solved magnetic domain memory in Co/Pd multilayers. The technique uses angular cross correlation functions and can be applied to any system with circular annuli of constant values of scattering wave vector q. In our Co/Pd film, the memory exhibits a maximum at q = 0.0384 nm-1 near initial reversal that decreases in magnitude as the magnetization is further reversed. The peak is attributed to bubble domains that nucleate reproducibly near initial reversal and which grow into a labyrinth domain structure that is not reproduced from one magnetization cycle to the next

    Investigation of opening position on natural cross ventilation for an isolated building

    Get PDF
    The opening position is one of the factors that affect the ventilation performance of a building. In this study, the effect of opening position on natural cross ventilation of isolated building was investigated. The airflow pattern and ventilation rate under different opening configurations were analyzed. Eight different opening configurations were considered, including aligned and unaligned openings, as well as vertical-opening design. Computational fluid dynamics (CFD) simulation with 3D steady-state RANS equation Shear Stress Transport (SST) k-ω turbulence model was used. The parameters of streamwise dimensionless wind speed ratio (U/Uref), pressure coefficient (Cp) and dimensionless flow rate (DFR) were analyzed in this study. The results show that the aligned opening configuration Top-Top has the highest DFR at 0.60. This result is similar to that obtained from the literature. In addition, the design of vertical openings can improve the DFR of the building. The DFR of the building is mainly affected by the position of the opening on the windward side. This concludes that the opening positions exert an imperative role in affecting the internal airflow pattern, air recirculation and DFR of a naturally cross ventilated building
    • …
    corecore