995 research outputs found

    Interferometry and higher-dimensional phase measurements using directionally unbiased linear optics

    Full text link
    Grover multiports are higher-dimensional generalizations of beam splitters, in which input to any one of the four ports has equal probability of exiting at any of the same four ports, including the input port. In this paper, we demonstrate that interferometers built from such multiports have novel features. For example, when combined with two-photon input and coincidence measurements, it is shown that such interferometers have capabilities beyond those of standard beam-splitter-based interferometers, such as easily controlled interpolation between Hong-Ou-Mandel (HOM) and anti-HOM behavior. Further, it is shown that the Grover-based analog of the Mach-Zehnder interferometer can make three separate phase measurements simultaneously. By arranging the transmission lines between the two multiports to lie in different planes, the same interferometer acts as a higher-dimensional Sagnac interferometer, allowing rotation rates about three different axes to be measured with a single device

    Enhanced-sensitivity interferometry with phase-sensitive unbiased multiports

    Full text link
    Here we introduce interferometric devices by combining optical feedback (cavities) with unbiased multiports, which unlike traditional beam dividers, allow light to reflect back out of the port from which it originated. By replacing the traditional, directionally-biased beam-splitter in a Michelson interferometer with an unbiased multiport, the functional dependence of the scattering amplitudes changes. As a result, the derivative of transmittance with respect to an external phase perturbation can be made substantially large. This significantly enhances the resolution of phase measurement, and allows the phase response curves to be altered in real time by tuning an externally-controllable phase shift

    Tungsten Spectroscopy for Fusion Plasmas

    Get PDF

    Direct measurement of non-linear properties of bipartite quantum states

    Full text link
    Non-linear properties of quantum states, such as entropy or entanglement, quantify important physical resources and are frequently used in quantum information science. They are usually calculated from a full description of a quantum state, even though they depend only on a small number parameters that specify the state. Here we extract a non-local and a non-linear quantity, namely the Renyi entropy, from local measurements on two pairs of polarization entangled photons. We also introduce a "phase marking" technique which allows to select uncorrupted outcomes even with non-deterministic sources of entangled photons. We use our experimental data to demonstrate the violation of entropic inequalities. They are examples of a non-linear entanglement witnesses and their power exceeds all linear tests for quantum entanglement based on all possible Bell-CHSH inequalities.Comment: To appear on PRL with minor change

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1x_{1-x}Tbx_xMnO3_3 (0x10 \le x \le 1) and (Eu,Y)1x_{1-x}Gdx_xMnO3_3 (0x0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa

    Ferroelectricity induced by interatomic magnetic exchange interaction

    Full text link
    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[10]. Recently several remedies have been proposed, e.g., improper ferroelectricity induced by specific magnetic[6] or charge orders[2]. Guiding by these theories, currently most research is focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature, consequently far from the practical application. Simple collinear magnets, which can have high magnetic transition temperature, have never been considered seriously as the candidates for multiferroics. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic (AFM) insulator MnO, can display a magnetically induced ferroelectricity under a biaxial strain
    corecore