720 research outputs found

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday

    A Derivation of Three-Dimensional Inertial Transformations

    Get PDF
    The derivation of the transformations between inertial frames made by Mansouri and Sexl is generalised to three dimensions for an arbitrary direction of the velocity. Assuming lenght contraction and time dilation to have their relativistic values, a set of transformations kinematically equivalent to special relativity is obtained. The ``clock hypothesis'' allows the derivation to be extended to accelerated systems. A theory of inertial transformations maintaining an absolute simultaneity is shown to be the only one logically consistent with accelerated movements. Algebraic properties of these transformations are discussed. Keywords: special relativity, synchronization, one-way velocity of light, ether, clock hypothesis.Comment: 16 pages (A5), Latex, one figure, to be published in Found. Phys. Lett. (1997

    Does Clauser-Horne-Shimony-Holt Correlation or Freedman-Clauser Correlation lead to the largest violation of Bell's Inequality?

    Get PDF
    An inequality is deduced from Einstein's locality and a supplementary assumption. This inequality defines an experiment which can actually be performed with present technology to test local realism. Quantum mechanics violate this inequality a factor of 1.5. In contrast, quantum mechanics violates previous inequalities (for example, Clauser-Horne-Shimony-Holt inequality of 1969, Freedman-Clauser inequality of 1972, Clauser-Horne inequality of 1974) by a factor of 2\sqrt 2. Thus the magnitude of violation of the inequality derived in this paper is approximately 20.720.7% larger than the magnitude of violation of previous inequalities. This result can be particularly important for the experimental test of locality.Comment: 15 pages, LaTeX file, no figure

    A comparison between standard and crossfeed monopulse radars in presence of rough sea scattering and ship movements

    Get PDF
    Monopulse radars are widely used in tracking systems, due to their relative simplicity and theoretical precision, but the presence of multipath impairs the tracking capabilities of these radars, especially when multipath signals are strong, as in a naval environment. A special monopulse setup, the crossfeed, has been proposed in the past to provide an automatic cancellation from smooth sea multipath. In this contribution, the performances of such a system are analyzed in presence of rough sea scattering and compared with those of a standard monopulse setup. Particular attention is devoted to performance degradations due to possible phase errors in the passive network implementing the comparator and due to ship rolling and pitching. This latter requires a full 3D monopulse simulator for its correct evaluation

    Time on a Rotating Platform

    Get PDF
    Traditional clock synchronisation on a rotating platform is shown to be incompatible with the experimentally established transformation of time. The latter transformation leads directly to solve this problem through noninvariant one-way speed of light. The conventionality of some features of relativity theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected] accepted for publication in Found. Phys. Let
    corecore