92 research outputs found

    Shuttle active thermal control system development testing. Volume 2: Modular radiator system tests

    Get PDF
    Tests were designed to investigate the validity of the "modular" approach to space radiator system design for space shuttle and future applications by gathering performance data on various systems comprised of different numbers of identical panels, subject to nominal and extreme heat loads and environments. Both one-sided and two-sided radiation was tested, and engineering data was gathered on simulated low a/e coatings and system response to changes in outlet temperature control point. The results of the testing showed system stability throughout nominal orbital transients, unrealistically skewed environments, freeze-thaw transients, and rapid changes in outlet temperature control point. Various alternative panel plumbing arrangements were tested with no significant changes in performance being observed. With the MRS panels arranged to represent the shuttle baseline system, a maximum heat rejection of 76,600 Btu/hr was obtained in segmented tests under the expected worst case design environments. Testing of an alternate smaller two-sided radiation configuration yielded a maximum heat rejection of 52,931 Btu/hr under the maximum design environments

    Shuttle active thermal control system development testing. Volume 4, Book 1: Modular radiator system test data

    Get PDF
    A three-week test of a modular radiator system was conducted and plots of all key data recorded during the three-week test are presented

    Doubly resonant Ti:sapphire laser

    Full text link

    Efficient, Scalable, Internally Folded Nd:YAG Laser

    No full text

    Noble-gas broadening of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>6</mml:mn><mml:mi /><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow><mml:mo>−</mml:mo><mml:mn>7</mml:mn><mml:mn /><mml:mi /><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>(377.6 nm)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>6</mml:mn><mml:mi /><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow><mml:mo>−</mml:mo><mml:mn>7</mml:mn><mml:mn /><mml:mi /><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>(535 nm) thallium lines

    Full text link

    Nd-.YAG And Nd:BEL Laser Pumped By Laser Diodes

    No full text
    corecore