425 research outputs found

    Further supporting evidence for REEP1 phenotypic and allelic heterogeneity.

    Get PDF
    Heterozygous mutations in REEP1 (MIM #609139) encoding the receptor expression-enhancing protein 1 (REEP1) are a well-recognized and relatively frequent cause of autosomal dominant hereditary spastic paraplegia (HSP), SPG31.1 REEP1 localizes in the mitochondria and endoplasmic reticulum (ER) and facilitates ER-mitochondria interactions.2 In addition to the HSP phenotype, REEP1 has been associated with an autosomal dominant spinal type of Charcot-Marie-Tooth disease in 2 families.3 More recently, a patient with homozygous REEP1 mutation with a much more severe phenotype akin to spinal muscular atrophy with respiratory distress type 1 (SMARD1) was reported.4 In this report, we present a patient with a homozygous mutation in REEP1 manifesting a severe congenital distal spinal muscular atrophy (SMA) with diaphragmatic paralysis, expanding the phenotype from mild autosomal dominant HSP through to severe recessive distal SMA pattern

    Recurrent respiratory infections between immunity and atopy

    Get PDF
    Recurrent respiratory infections (RRIs) are frequent in children and are characterized by more than 6 airway infections in 1 year or more than 1 upper airway infection per month in the period between September and April or more than 3 lower airway infections in 1 year. Often pediatric RRIs are related to predisposing factors, such as reduced airway size, poor tussive reflex, and immaturity of the immune system. RRIs due to immature immune system are a transient condition, with spontaneous resolution in the school age. However, some RRIs are expression of more complex diseases. Red flags are the onset of symptoms in the first year of life, the involvement of other systems, unusual pathogens, slowing of growth, severe infections of the lower airways, and recurrence of the infection site. To help the pediatrician in the RRI differential diagnosis, we have created a roadmap based on scientific literature data and clinical practice that identifies 6 macro areas: immunodeficiencies, simple minimal genetic immunodeficiency, atopy, obesity, nutritional deficiencies, autoinflammatory diseases, and complex diseases

    Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review

    Get PDF
    This study was aimed to analyze the commonalities and distinctions of voltage-gated sodium channels, Nav1.2, Nav1.6, in neurodevelopmental disorders. An observational study was performed including two patients with neurodevelopmental disorders. The demographic, electroclinical, genetic, and neuropsychological characteristics were analyzed and compared with each other and then with the subjects carrying the same genetic variants reported in the literature. The clinical features of one of them argued for autism spectrum disorder and developmental delay, the other for intellectual disability, diagnoses confirmed by the neuropsychological assessment. The first patient was a carrier of SCN2A (p.R379H) variant while the second was carrier of SCN8A (p.E936K) variant, both involving the pore loop of the two channels. The results of this study suggest that the neurodevelopmental disorders without overt epilepsy of both patients can be the consequences of loss of function of Nav1.2/Nav1.6 channels. Notably, the SCN2A variant, with an earlier expression timing in brain development, resulted in a more severe phenotype as autism spectrum disorder and developmental delay, while the SCN8A variant, with a later expression timing, resulted in a less severe phenotype as intellectual disability

    A paradigmatic autistic phenotype associated with loss of PCDH11Y and NLGN4Y genes

    Get PDF
    Background: Most studies relative to Y chromosome abnormalities are focused on the sexual developmental disorders. Recently, a few studies suggest that some genes located on Y chromosome may be related to different neurodevelopment disorders. Case presentation: We report a child with sexual developmental disorder associated with a peculiar phenotype characterized by severe language impairment and autistic behaviour associated with a mosaicism [45,X(11)/46,XY(89)] and a partial deletion of the short and long arm of Y chromosome (del Yp11.31q11.23) that also involves the loss of both PCDH11Y and NLGN4Y genes. To our knowledge no study has ever reported the occurrence of the lack of both PCDH11Y and NLGN4Y located in the Y chromosome in the same patient. Conclusions: We hypothesized a functional complementary role of PCDH11Y and NLGN4Y within formation/maturation of the cerebral cortex. The impairment of early language development may be mainly related to the lack of PCDH11Y that underlies the early language network development and the later appearance of the autistic behaviour may be mainly related to deficit of inhibitory glicinergic neurotransmission NLGN4Y-linked

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders

    Get PDF
    © 2019, The Author(s). AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Protein carbonyl group content in patients affected by familiar chronic nail candidiasis.

    Get PDF
    Familiar chronic nail candidiasis (FCNC) is a rare disorder characterized by early-onset infections caused by different species of Candida, restricted to the nail of the hands and feet, and associated with a low serum concentration of intercellular adhesion molecule 1. Host defense mechanisms against candidiasis require the cooperation of many immune cells through several candidacidal mechanisms, including oxygen-dependent killing mechanisms, mediated by a superoxide anion radical myeloperoxidase--H2O2--halide system, and reactive nitrogen intermediates. We analyzed protein carbonyl groups (considered a useful marker of oxidative stress) in the serum of patients belonging to a five-generation Italian family with an isolated form of FCNC. Serum protein carbonyl groups in FCNC patients were significantly lower than those measured in healthy donors. Also, if this hypothesis is merely speculative, we could suggest that the decreased circulating level of protein carbonyl groups in these patients is not a marker of a lower oxidative stress condition, but might be linked to a lower protease activity

    A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy

    Get PDF
    Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1−/− neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness

    Mitochondrial DNA analysis from exome sequencing data improves the diagnostic yield in neurological diseases

    Get PDF
    A rapidly expanding catalogue of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty‐four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases
    corecore