1,872 research outputs found
RF Front End Interface and AGC Modification
The latest RF front end built by Burhans (Mini-L-82) was successfully interfaced to the Ohio University LORAN-C receiver. In order for the front end to operate optimally, modifications were made to existing automatic gain control (AGC) circuitry already developed for the Ohio University LORAN-C receiver. The hardware modifications to the AGC and other interface circuitry, as well as some preliminary results are discussed
RS-232 communications analyzer module for HP-1602A logic analyzer
The design and construction of a simple ASCII analyzer is described. It was built to interface directly to a Hewlett-Packard 1602A logic state analyzer but the circuitry could easily be configured to operate with any logic analyzer. The design of the ASCII analyzer allows the use of all the trace and delay functions for the HF-1602A. The ASCII analyzer circuit utilizes two universal Asynchronous Receiver/Transmitters (UAR/Ts) to simultaneously examine both the transmit and receive serial data lines. Baud rates from 300 to 9600 bits per second are selectable with the externally mounted DIP switch. The unit requires no external power supply connection and all of the integrated circuits are CMOS for low power consumption
Commutated automatic gain control system
A commutated automatic gain control system (AGC) was designed and constructed for the prototype Loran C receiver. The AGC is designed to improve the signal-to-signal ratio of the received Loran signals. The AGC design does not require any analog to digital conversion and it utilizes commonly available components. The AGC consists of: (1) a circuit which samples the peak of the envelope of the Loran signal to obtain an AGC voltage for each of three Loran stations, (2) a dc gain circuit to control the overall gain of the AGC system, and (3) an AGC amplification of the input RF signal. The performance of the AGC system was observed in bench and flight tests; it has improved the overall accuracy of the receiver. Improvements in the accuracy of the time difference calculations to within approx. + or - 1.5 microseconds of the observed time differnces for a given position are reported
DC-to-DC power supply for light aircraft flight testing
The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design
Multispectral photography for earth resources
A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning
A Late-Time Flattening of Afterglow Light Curves
We present a sample of radio afterglow light curves with measured decay
slopes which show evidence for a flattening at late times compared to optical
and X-ray decay indices. The simplest origin for this behavior is that the
change in slope is due to a jet-like outflow making a transition to
sub-relativistic expansion. This can explain the late-time radio light curves
for many but not all of the bursts in the sample. We investigate several
possible modifications to the standard fireball model which can flatten
late-time light curves. Changes to the shock microphysics which govern particle
acceleration, or energy injection to the shock (either radially or azimuthally)
can reproduce the observed behavior. Distinguishing between these different
possibilities will require simultaneous optical/radio monitoring of afterglows
at late times.Comment: ApJ, submitte
The afterglows of gamma-ray bursts
Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth
The afterglows of gamma-ray bursts
Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long-duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth
The afterglows of gamma-ray bursts
Gamma-ray burst astronomy has undergone a revolution in the last three years, spurred by the discovery of fading long-wavelength counterparts. We now know that at least the long duration GRBs lie at cosmological distances with estimated electromagnetic energy release of 10^51–10^53 erg, making these the brightest explosions in the Universe. In this article we review the current observational state, beginning with the statistics of X-ray, optical, and radio afterglow detections. We then discuss the insights these observations have given to the progenitor population, the energetics of the GRB events, and the physics of the afterglow emission. We focus particular attention on the evidence linking GRBs to the explosion of massive stars. Throughout, we identify remaining puzzles and uncertainties, and emphasize promising observational tools for addressing them. The imminent launch of HETE-2 and the increasingly sophisticated and coordinated ground-based and space-based observations have primed this field for fantastic growth. This overview is a combined write-up of talks given at this conference and in NASA's Goddard Space Flight Center
Cosmological Uses of Gamma-Ray Bursts
Studies of the cosmic gamma-ray bursts (GRBs) and their host galaxies are
starting to provide interesting or even unique new insights in observational
cosmology. GRBs represent a new way of identifying a population of star-forming
galaxies at cosmological redshifts. GRB hosts are broadly similar to the normal
field galaxy populations at comparable redshifts and magnitudes, and indicate
at most a mild luminosity evolution out to z ~ 1.5 - 2. GRB optical afterglows
seen in absorption provide a powerful new probe of the ISM in dense, central
regions of their host galaxies, complementary to the traditional studies using
QSO absorbers. Some GRB hosts are heavily obscured, and provide a new way to
select a population of cosmological sub-mm sources, and a novel constraint on
the total obscured fraction of star formation over the history of the universe.
Finally, detection of GRB afterglows at z > 6 may provide a unique way to probe
the primordial star formation, massive IMF, early IGM, and chemical enrichment
at the end of the cosmic reionization era.Comment: An invited review, to appear in: "Gamma-Ray Bursts in the Afterglow
Era: 3rd Workshop", ASPCS, in press; LaTeX file, 8 pages, 1 eps figure, style
files include
- …