30 research outputs found

    Force Distribution in a Granular Medium

    Full text link
    We report on systematic measurements of the distribution of normal forces exerted by granular material under uniaxial compression onto the interior surfaces of a confining vessel. Our experiments on three-dimensional, random packings of monodisperse glass beads show that this distribution is nearly uniform for forces below the mean force and decays exponentially for forces greater than the mean. The shape of the distribution and the value of the exponential decay constant are unaffected by changes in the system preparation history or in the boundary conditions. An empirical functional form for the distribution is proposed that provides an excellent fit over the whole force range measured and is also consistent with recent computer simulation data.Comment: 6 pages. For more information, see http://mrsec.uchicago.edu/granula

    Power-Laws in Nonlinear Granular Chain under Gravity

    Full text link
    The signal generated by a weak impulse propagates in an oscillatory way and dispersively in a gravitationally compacted granular chain. For the power-law type contact force, we show analytically that the type of dispersion follows power-laws in depth. The power-law for grain displacement signal is given by h1/4(11/p)h^{-1/4(1-1/p)} where hh and pp denote depth and the exponent of contact force, and the power-law for the grain velocity is h1/4(1/3+1/p)h^{-1/4({1/3}+1/p)}. Other depth-dependent power-laws for oscillation frequency, wavelength, and period are given by combining above two and the phase velocity power-law h1/2(11/p)h^{1/2(1-1/p)}. We verify above power-laws by comparing with the data obtained by numerical simulations.Comment: 12 pages, 3 figures; Changed conten

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure

    Capsid Antibodies to Different Adeno-Associated Virus Serotypes Bind Common Regions

    Get PDF
    Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized. Cryo-electron microscopy and three-dimensional image reconstruction were used to define the locations of epitopes to which monoclonal fragment antibodies (Fabs) against AAV1, AAV2, AAV5, and AAV6 bind. Pseudoatomic modeling showed that, in each serotype, Fabs bound to a limited number of sites near the protrusions surrounding the 3-fold axes of the T=1 icosahedral capsids. For the closely related AAV1 and AAV6, a common Fab exhibited substoichiometric binding, with one Fab bound, on average, between two of the three protrusions as a consequence of steric crowding. The other AAV Fabs saturated the capsid and bound to the walls of all 60 protrusions, with the footprint for the AAV5 antibody extending toward the 5-fold axis. The angle of incidence for each bound Fab on the AAVs varied and resulted in significant differences in how much of each viral capsid surface was occluded beyond the Fab footprints. The AAV-antibody interactions showed a common set of footprints that overlapped some known receptor-binding sites and transduction determinants, thus suggesting potential mechanisms for virus neutralization by the antibodies

    Overview of the Alliance for Cellular Signaling

    Full text link
    The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells-B lymphocytes (the cells of the immune system) and cardiac myocytes-to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62977/1/nature01304.pd
    corecore