40,025 research outputs found
Acquiring Correct Knowledge for Natural Language Generation
Natural language generation (NLG) systems are computer software systems that
produce texts in English and other human languages, often from non-linguistic
input data. NLG systems, like most AI systems, need substantial amounts of
knowledge. However, our experience in two NLG projects suggests that it is
difficult to acquire correct knowledge for NLG systems; indeed, every knowledge
acquisition (KA) technique we tried had significant problems. In general terms,
these problems were due to the complexity, novelty, and poorly understood
nature of the tasks our systems attempted, and were worsened by the fact that
people write so differently. This meant in particular that corpus-based KA
approaches suffered because it was impossible to assemble a sizable corpus of
high-quality consistent manually written texts in our domains; and structured
expert-oriented KA techniques suffered because experts disagreed and because we
could not get enough information about special and unusual cases to build
robust systems. We believe that such problems are likely to affect many other
NLG systems as well. In the long term, we hope that new KA techniques may
emerge to help NLG system builders. In the shorter term, we believe that
understanding how individual KA techniques can fail, and using a mixture of
different KA techniques with different strengths and weaknesses, can help
developers acquire NLG knowledge that is mostly correct
Research study on materials processing in space experiment M512
A study program was conducted to clarify the role of gravity in the fluid mechanics of certain molten metal processes of potential significance to manufacturing in space. In particular, analyses were conducted of the M551 Metals Melting Experiment and the M553 Sphere Forming Experiment to be conducted in the M512 Facility onboard Skylab. The M551 experiment consisted of a study of electron beam welding of various metals, and the M553 experiment studied the formation of molten metal spheres by free-floating in a near zero-gravity environment. The analyses of these experiments and a comparison with ground-based and KC135 experimental results are presented
Research study on materials processing in space experiment M512
A study program was conducted to clarify the role of gravity in the fluid mechanics of certain molten metal processes of potential significance to manufacturing in space. In particular, analyses were conducted of the M551 Metals Melting Experiment and the M553 Sphere Forming Experiment to be conducted in the M512 Facility onboard Skylab. The M551 experiment consisted of a study of electron beam welding of various metals, and the M553 experiment studied the formation of molten metal spheres by free-floating in a near zero-gravity environment. The analyses of these experiments and a comparison with ground-based and KC135 experimental results are presented
Probabilistic models of information retrieval based on measuring the divergence from randomness
We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model
Squeezing out the last 1 nanometer of water: A detailed nanomechanical study
In this study, we present a detailed analysis of the squeeze-out dynamics of
nanoconfined water confined between two hydrophilic surfaces measured by
small-amplitude dynamic atomic force microscopy (AFM). Explicitly considering
the instantaneous tip-surface separation during squeezeout, we confirm the
existence of an adsorbed molecular water layer on mica and at least two
hydration layers. We also confirm the previous observation of a sharp
transition in the viscoelastic response of the nanoconfined water as the
compression rate is increased beyond a critical value (previously determined to
be about 0.8 nm/s). We find that below the critical value, the tip passes
smoothly through the molecular layers of the film, while above the critical
speed, the tip encounters "pinning" at separations where the film is able to
temporarily order. Pre-ordering of the film is accompanied by increased force
fluctuations, which lead to increased damping preceding a peak in the film
stiffness once ordering is completed. We analyze the data using both
Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary
picture of the viscoelastic response of the confined water film
Quantum Information Paradox: Real or Fictitious?
One of the outstanding puzzles of theoretical physics is whether quantum
information indeed gets lost in the case of Black Hole (BH) evaporation or
accretion. Let us recall that Quantum Mechanics (QM) demands an upper limit on
the acceleration of a test particle. On the other hand, it is pointed out here
that, if a Schwarzschild BH would exist, the acceleration of the test particle
would blow up at the event horizon in violation of QM. Thus the concept of an
exact BH is in contradiction of QM and quantum gravity (QG). It is also
reminded that the mass of a BH actually appears as an INTEGRATION CONSTANT of
Einstein equations. And it has been shown that the value of this integration
constant is actually zero. Thus even classically, there cannot be finite mass
BHs though zero mass BH is allowed. It has been further shown that during
continued gravitational collapse, radiation emanating from the contracting
object gets trapped within it by the runaway gravitational field. As a
consequence, the contracting body attains a quasi-static state where outward
trapped radiation pressure gets balanced by inward gravitational pull and the
ideal classical BH state is never formed in a finite proper time. In other
words, continued gravitational collapse results in an "Eternally Collapsing
Object" which is a ball of hot plasma and which is asymptotically approaching
the true BH state with M=0 after radiating away its entire mass energy. And if
we include QM, this contraction must halt at a radius suggested by highest QM
acceleration. In any case no EH is ever formed and in reality, there is no
quantum information paradox.Comment: 8 pages in Pramana Style, 6 in Revtex styl
Are there any good digraph width measures?
Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the "nice" properties of treewidth:
First, being \emph{algorithmically useful} i.e. admitting polynomial-time
algorithms for all \MS1-definable problems on digraphs of bounded width. And,
second, having nice \emph{structural properties} i.e. being monotone under
taking subdigraphs and some form of arc contractions. As for the former,
(undirected) \MS1 seems to be the least common denominator of all reasonably
expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set.The latter property is a necessary condition for a
width measure to be characterizable by some version of the cops-and-robber game
characterizing the ordinary treewidth. Our main result is that \emph{any
reasonable} algorithmically useful and structurally nice digraph measure cannot
be substantially different from the treewidth of the underlying undirected
graph. Moreover, we introduce \emph{directed topological minors} and argue that
they are the weakest useful notion of minors for digraphs
Inferring effective interactions from the local density of states: application to STM data from BiSrCaCuO
While the influence of impurities on the local density of states (LDOS) in a
metal is notoriously non-local due to interference effects, low order moments
of the LDOS in general can be shown to depend only on the local structure of
the Hamiltonian. Specifically, we show that an analysis of the spatial
variations of these moments permits one to ``work backwards'' from scanning
tunneling microscopy (STM) data to infer the local structure of the underlying
effective Hamiltonian. Applying this analysis to STM data from the high
temperature superconductor, BiSrCaCuO, we find that
the variations of the electro-chemical potential are remarkably small (i.e.,
the disorder is, in a sense, weak) but that there are large variations in the
local magnitude of the d-wave gap parameter.Comment: 7 pages, 7 figure
- …