32,094 research outputs found
Initial behavioural and attitudinal responses to influenza A, H1N1 ('swine flu')
Copyright © 2010 by the BMJ Publishing Group Ltd. All rights reserved.This study was sponsored by Canadian Institute of Health Research (CIHR), and
supported by the Community Coalition Concerned about SARS and other community organisations in the great Toronto area
Geometric effects in applied-field MPD thrusters
Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla)
Black Holes with a Generalized Gravitational Action
Microscopic black holes are sensitive to higher dimension operators in the
gravitational action. We compute the influence of these operators on the
Schwarzschild solution using perturbation theory. All (time reversal invariant)
operators of dimension six are included (dimension four operators don't alter
the Schwarzschild solution). Corrections to the relation between the Hawking
temperature and the black hole mass are found. The entropy is calculated using
the Gibbons-Hawking prescription for the Euclidean path integral and using
naive thermodynamic reasoning. These two methods agree, however, the entropy is
not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185
CFHT AO Imaging of the CLASS Gravitational Lens System B1359+154
We present adaptive optics imaging of the CLASS gravitational lens system
B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the
infrared K band. The observations show at least three brightness peaks within
the ring of lensed images, which we identify as emission from multiple lensing
galaxies. The results confirm the suspected compound nature of the lens, as
deduced from preliminary mass modeling. The detection of several additional
nearby galaxies suggests that B1359+154 is lensed by the compact core of a
small galaxy group. We attempted to produce an updated lens model based on the
CFHT observations and new 5-GHz radio data obtained with the MERLIN array, but
there are too few constraints to construct a realistic model at this time. The
uncertainties inherent with modeling compound lenses make B1359+154 a
challenging target for Hubble constant determination through the measurement of
differential time delays. However, time delays will offer additional
constraints to help pin down the mass model. This lens system therefore
presents a unique opportunity to directly measure the mass distribution of a
galaxy group at intermediate redshift.Comment: 12 pages including 3 figures; ApJL accepte
Nuclear condensation and the equation of state of nuclear matter
The isothermal compression of a dilute nucleonic gas invoking cluster degrees
of freedom is studied in an equilibrium statistical model; this clusterized
system is found to be more stable than the pure nucleonic system. The equation
of state (EoS) of this matter shows features qualitatively very similar to the
one obtained from pure nucleonic gas. In the isothermal compression process,
there is a sudden enhancement of clusterization at a transition density
rendering features analogous to the gas-liquid phase transition in normal
dilute nucleonic matter. Different observables like the caloric curves, heat
capacity, isospin distillation, etc. are studied in both the models. Possible
changes in the observables due to recently indicated medium modifications in
the symmetry energy are also investigated.Comment: 18 pages and 11 figures. Phys. Rev. C (in press
Charge Influence On Mini Black Hole's Cross Section
In this work we study the electric charge effect on the cross section
production of charged mini black holes (MBH) in accelerators. We analyze the
charged MBH solution using the {\it fat brane} approximation in the context of
the ADD model. The maximum charge-mass ratio condition for the existence of a
horizon radius is discussed. We show that the electric charge causes a decrease
in this radius and, consequently, in the cross section. This reduction is
negligible for protons and light ions but can be important for heavy ions.Comment: 4 pages, 0 figure. To be published in Int. J. Mod. Phys. D
Small Black Holes on Branes: Is the horizon regular or singular ?
We investigate the following question: Consider a small mass, with
(the ratio of the Schwarzschild radius and the bulk curvature length) much
smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I
scenario. Does it form a black hole with a regular horizon, or a naked
singularity? The metric is expanded in and the asymptotic form of
the metric is given by the weak field approximation (linear in the mass). In
first order of we show that the iteration of the weak field
solution, which includes only integer powers of the mass, leads to a solution
that has a singular horizon. We find a solution with a regular horizon but its
asymptotic expansion in the mass also contains half integer powers.Comment: Accepted for publication in PR
- …