21 research outputs found

    Decoupling of dissolved and bedrock neodymium isotopes during sedimentary cycling

    Get PDF
    The radiogenic neodymium isotope ratio143Nd/144Nd (expressed as εNd) has been applied to examine seawater elemental budgets, sedimentary provenance, oceanic water mass source and circulation, large scale geochemical cycling, and continental crust growth rates. These applications are underpinned by the assumption that during sedimentary processing the parent/daughter (samarium/neodymium) ratio is conservative during low temperature fluid related processes. In this study, we report εNd data from two streams draining sedimentary formations in the Arctic archipelago of Svalbard. The εNd value of the dissolved load is offset from stream suspended sediment samples by up to 5.5 epsilon units. We demonstrate that dissolved load εNd values are controlled by the dissolution of labile phases present in the catchment rocks which are isotopically distinct from the silicate residue and account for up to 12 % Nd in the bulk sediment. This study highlights; 1) the potential for incongruent release of Nd isotopes to seawater from rocks and sediments, with implications for the isotopic composition of seawater, and 2) the large scale decoupling between a rapidly exchanging labile reservoir and a silicate-bound reservoir during sediment recycling

    Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments

    Get PDF
    In order to investigate the effect of glaciation on mineral weathering, the stream water chemistry and the bacterial community composition were analysed in two catchments containing nominally identical sedimentary formations but which differed in the extent of glaciation. The stream waters were analysed for major ions, δ34S, δ18OSO4 and δ18OH2O and associated stream sediments were analysed by 16S rRNA gene tagged sequencing. Sulphate comprised 72–86% and 35–45% of the summer anion budget (in meq) in the unglaciated and glaciated catchments respectively. This indicates that sulfuric acid generated from pyrite weathering is a significant weathering agent in both catchments. Based on the relative proportions of cations, sulphate and bicarbonate, the stream water chemistry of the unglaciated catchment was found to be consistent with a sulphide oxidation coupled to silicate dissolution weathering process whereas in the glaciated catchment both carbonates and silicates weathered via both sulfuric and carbonic acids. Stable isotope measurements of sulphate, together with inferences of metabolic processes catalysed by resident microbial communities, revealed that the pyrite oxidation reaction differed between the two catchments. No δ34S fractionation relative to pyrite was observed in the unglaciated catchment and this was interpreted to reflect pyrite oxidation under oxic conditions. In contrast, δ34S and δ18OSO4 values were positively correlated in the glaciated catchment and were positively offset from pyrite. This was interpreted to reflect pyrite oxidation under anoxic conditions with loss of S intermediates. This study suggests that glaciation may alter stream water chemistry and the mechanism of pyrite oxidation through an interplay of biological, physical and chemical factors

    Arctic Oceanography - Oceanography: Atmosphere-Ocean Exchange, Biogeochemistry & Physics

    Get PDF
    The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent

    Origin and temporal variability of unusually low δ¹³C-DOC values in two High Arctic catchments

    Get PDF
    The stable carbon isotopic composition of dissolved organic matter (δ13C-DOC) reveals information about its source and extent of biological processing. Here we report the lowest δ13C-DOC values (−43.8‰) measured to date in surface waters. The streams were located in the High Arctic, a region currently experiencing rapid changes in climate and carbon cycling. Based on the widespread occurrence of methane cycling in permafrost regions and the detection of the pmoA gene, a proxy for aerobic methanotrophs, we conclude that the low δ13C-DOC values are due to organic matter partially derived from methanotrophs consuming biologically produced, 13C-depleted methane. These findings demonstrate the significant impact that biological activity has on the stream water chemistry exported from permafrost and glaciated environments in the Arctic. Given that the catchments studied here are representative of larger areas of the Arctic, occurrences of low δ13C-DOC values may be more widespread than previously recognized, with implications for understanding C cycling in these environments

    Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios

    No full text
    Chemical and isotope data (ε40Ca, δ44/42Ca, 87Sr/86Sr, δ18O) of river water samples were collected twice daily for 28 days in 2009 from the outlet river of Leverett Glacier, West Greenland. The water chemistry data was combined with detailed geochemical analysis and petrography of bulk rock, mineral separates and sediment samples in order to constrain the mineral weathering sources to the river. The average isotopic compositions measured in the river, with 2SD of all the values measured, were ε40Ca = +4.0 ± 1.4, δ44/42Ca = +0.60 ± 0.10‰ and 87Sr/86Sr = 0.74243 ± 0.00327. Based on changes in bulk meltwater discharge, the hydrochemical data was divided into three hydrological periods. The first period was marked by the tail-end of an outburst event and was characterised by water with decreasing suspended sediment concentrations (SSC), ion concentrations and pH. During the second hydrological period, discharge increased whilst 87Sr/86Sr decreased from 0.74550 to 0.74164. Based on binary mixing diagrams using 87Sr/86Sr with Na/Sr, Ca/Sr and ε40Ca, this is interpreted to reflect an increase in reactive mineral weathering, in particular epidote, as the water residence time decreases. The decrease in water residence time is a result of the evolution from a distributed (long water residence time) to a channelised (short water residence time) subglacial drainage network. The third hydrological period was defined as the period when overall discharge was decreasing. This hydrological period was marked by prominent diurnal cycles in discharge. During this period, significant correlations between δ44/42Ca and SSC and δ18O were observed which are suggestive of fractionation during adsorption. This study demonstrates the potential of radiogenic Ca to both identify temporally changing mineral sources in conjunction with 87Sr/86Sr values and to separate source and fractionation effects in δ44/42Ca values

    Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream

    No full text
    Seasonal changes in river chemistry offer the potential to assess how weathering processes respond to changing meteorological parameters and ultimately how chemical weathering might respond to climatic parameters. Systematic seasonal variations in magnesium isotope ratios (the 26Mg/24Mg ratio expressed as δ26Mg in per mil units) are reported in stream waters from a mono-lithological granitic, weathering-limited, first order catchment from the Swiss Alps (Damma glacier). Rain, ground, and pore-waters, in addition to plants, rocks, mineral separates and soil are also reported. The concentration response of the river waters is attenuated compared to the large changes in discharge. However, the systematic trends in the isotope data imply that either the source of the Mg changes in a systematic manner, or that the process by which Mg is released into solution changes as a function of discharge.\ud \ud The two first order observations in the data that need to be explained are 1) the systematic enrichment in 24Mg in the stream waters compared to the granitic rocks they drain and 2) a systematic increase in δ26Mg in the waters during the summer melt season. Both observations (which are similar to many other rivers draining silicate rock) can either be accounted for by 1) conservative mixing between at least two different sources of Mg (in addition to precipitation inputs), or 2) process related fractionation. If the stream water compositions can be rationalised by multi-component mixing, there is at least one unidentified component with a δ26Mg < − 1.2‰. This is considered unlikely. Multiple physicochemical processes could fractionate Mg isotope ratios such as 1) preferential leaching of 24Mg, 2) exchange of Mg onto (or from) mineral surfaces and into interlayer sites of clays, 3) uptake by plants, and 4) 26Mg could be preferentially retained during the formation of secondary phases, such as clays, amorphous phases or oxides. These processes are not mutually exclusive and distinguishing between them at a field scale is not trivial, but significant biological uptake is improbable at this site. Unless there is a non-identified external input of Mg, 26Mg must be accumulating in solid phase residues in the catchment because of at least one physicochemical process. Such processes are likely well described, at least in the first order by a Rayleigh distillation model. Simple calculations illustrate how much 26Mg would accumulate in the catchment per unit time. In the first order, the isotopic enrichments in the solids are so small that they would not be detectable for the time-scales that are relevant to this field site, in spite of the marked impact on the water chemistry. The seasonal signal detected by Mg isotope ratios is promising for using them (with a better understanding of fractionation mechanisms) to quantify how specific weathering processes impact upon both export fluxes, and retention of elements within catchments

    Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland

    No full text
    The biogeochemical cycling and isotopic fractionation of calcium during the initial stages of weathering were investigated in an alpine soil chronosequence (Damma glacier, Switzerland). This site has a homogeneous silicate lithology and minimal biological impacts due to sparse vegetation cover. Calcium isotopic compositions, obtained by TIMS using a 43Ca–46Ca double spike, were measured in the main Ca pools. During this very early stage of weathering, the young soils which have formed (δ44/42Ca=+0.44‰)(δ44/42Ca=+0.44‰) were indistinguishable to the rocks from which they were derived (δ44/42Ca=+0.44‰)(δ44/42Ca=+0.44‰) and stream water (δ44/42Ca=+0.48‰)(δ44/42Ca=+0.48‰) was also within error of the average rock. This lack of variation indicates that the dissolution of the bulk silicate rock does not strongly fractionate Ca isotopes. The only Ca pool which was strongly fractionated from bulk rock was vegetation, which exhibited an enrichment of light Ca isotopes. Significant Ca isotope fractionation between bulk rock and the dissolved flux of Ca is likely to only occur where the Ca biogeochemical cycle is dominated by secondary processes such as biological cycling, adsorption and secondary mineral precipitation
    corecore