5,789 research outputs found

    Non-Abelian Chern-Simons models with discrete gauge groups on a lattice

    Full text link
    We construct the local Hamiltonian description of the Chern-Simons theory with discrete non-Abelian gauge group on a lattice. We show that the theory is fully determined by the phase factors associated with gauge transformations and classify all possible non-equivalent phase factors. We also construct the gauge invariant electric field operators that move fluxons around and create/anihilate them. We compute the resulting braiding properties of the fluxons. We apply our general results to the simplest class of non-Abelian groups, dihedral groups D_n.Comment: 16 pages, 7 figure

    Surface Polymer Network Model and Effective Membrane Curvature Elasticity

    Full text link
    A microscopic model of a surface polymer network - membrane system is introduced, with contact polymer surface interactions that can be either repulsive or attractive and sliplinks of functionality four randomly distributed over the supporting membrane surface anchoring the polymers to it. For the supporting surface perturbed from a planar configuration and a small relative number of surface sliplinks, we investigate an expansion of the free energy in terms of the local curvatures of the surface and the surface density of sliplinks, obtained through the application of the Balian - Bloch - Duplantier multiple surface scattering method. As a result, the dependence of the curvature elastic modulus, the Gaussian modulus as well as of the spontaneous curvature of the "dressed" membrane, ~{\sl i.e.} polymer network plus membrane matrix, is obtained on the mean polymer bulk end to end separation and the surface density of sliplinks.Comment: 15 pages with one included compressed uuencoded figure

    Stability of flux vacua in the presence of charged black holes

    Full text link
    In this letter we consider a charged black hole in a flux compactification of type IIB string theory. Both the black hole and the fluxes will induce potentials for the complex structure moduli. We choose the compact dimensions to be described locally by a deformed conifold, creating a large hierarchy. We demonstrate that the presence of a black hole typically will not change the minimum of the moduli potential in a substantial way. However, we also point out a couple of possible loop-holes, which in some cases could lead to interesting physical consequences such as changes in the hierarchy.Comment: 14 pages. Published versio

    A Large k Asymptotics of Witten's Invariant of Seifert Manifolds

    Full text link
    We calculate a large kk asymptotic expansion of the exact surgery formula for Witten's SU(2)SU(2) invariant of Seifert manifolds. The contributions of all flat connections are identified. An agreement with the 1-loop formula is checked. A contribution of the irreducible connections appears to contain only a finite number of terms in the asymptotic series. A 2-loop correction to the contribution of the trivial connection is found to be proportional to Casson's invariant.Comment: 51 pages (Some changes are made to the Discussion section. A surgery formula for perturbative corrections to the contribution of the trivial connection is suggested.

    On the Quantum Invariant for the Brieskorn Homology Spheres

    Full text link
    We study an exact asymptotic behavior of the Witten-Reshetikhin-Turaev invariant for the Brieskorn homology spheres Σ(p1,p2,p3)\Sigma(p_1,p_2,p_3) by use of properties of the modular form following a method proposed by Lawrence and Zagier. Key observation is that the invariant coincides with a limiting value of the Eichler integral of the modular form with weight 3/2. We show that the Casson invariant is related to the number of the Eichler integrals which do not vanish in a limit τNZ\tau\to N \in \mathbb{Z}. Correspondingly there is a one-to-one correspondence between the non-vanishing Eichler integrals and the irreducible representation of the fundamental group, and the Chern-Simons invariant is given from the Eichler integral in this limit. It is also shown that the Ohtsuki invariant follows from a nearly modular property of the Eichler integral, and we give an explicit form in terms of the L-function.Comment: 26 pages, 2 figure

    Drinfeld-Manin Instanton and Its Noncommutative Generalization

    Full text link
    The Drinfeld-Manin construction of U(N) instanton is reformulated in the ADHM formulism, which gives explicit general solutions of the ADHM constraints for U(N) (N>=2k-1) k-instantons. For the N<2k-1 case, implicit results are given systematically as further constraints, which can be used to the collective coordinate integral. We find that this formulism can be easily generalized to the noncommutative case, where the explicit solutions are as well obtained.Comment: 17 pages, LaTeX, references added, mailing address added, clarifications adde

    A Note on the Equality of Algebraic and Geometric D-Brane Charges in WZW Models

    Get PDF
    The algebraic definition of charges for symmetry-preserving D-branes in Wess-Zumino-Witten models is shown to coincide with the geometric definition, for all simple Lie groups. The charge group for such branes is computed from the ambiguities inherent in the geometric definition.Comment: 12 pages, fixed typos, added references and a couple of remark

    The boundary field theory induced by the Chern-Simons theory

    Full text link
    The Chern-Simons theory defined on a 3-dimensional manifold with boundary is written as a two-dimensional field theory defined only on the boundary of the three-manifold. The resulting theory is, essentially, the pullback to the boundary of a symplectic structure defined on the space of auxiliary fields in terms of which the connection one-form of the Chern-Simons theory is expressed when solving the condition of vanishing curvature. The counting of the physical degrees of freedom living in the boundary associated to the model is performed using Dirac's canonical analysis for the particular case of the gauge group SU(2). The result is that the specific model has one physical local degree of freedom. Moreover, the role of the boundary conditions on the original Chern- Simons theory is displayed and clarified in an example, which shows how the gauge content as well as the structure of the constraints of the induced boundary theory is affected.Comment: 10 page

    Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations

    Full text link
    We discuss the possible relevance of some recent mathematical results and techniques on four-manifolds to physics. We first suggest that the existence of uncountably many R^4's with non-equivalent smooth structures, a mathematical phenomenon unique to four dimensions, may be responsible for the observed four-dimensionality of spacetime. We then point out the remarkable fact that self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean signature without affecting the metric. As a specific example, we consider solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are covariantly constant, the monopole Weyl spinor has only a single constant component, and the 4-manifold M_4 is a product of two Riemann surfaces Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric) vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being excluded). When the two genuses are equal, the electromagnetic fields are self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000, Istanbu

    Some Relations between Twisted K-theory and E8 Gauge Theory

    Full text link
    Recently, Diaconescu, Moore and Witten provided a nontrivial link between K-theory and M-theory, by deriving the partition function of the Ramond-Ramond fields of Type IIA string theory from an E8 gauge theory in eleven dimensions. We give some relations between twisted K-theory and M-theory by adapting the method of Diaconescu-Moore-Witten and Moore-Saulina. In particular, we construct the twisted K-theory torus which defines the partition function, and also discuss the problem from the E8 loop group picture, in which the Dixmier-Douady class is the Neveu-Schwarz field. In the process of doing this, we encounter some mathematics that is new to the physics literature. In particular, the eta differential form, which is the generalization of the eta invariant, arises naturally in this context. We conclude with several open problems in mathematics and string theory.Comment: 23 pages, latex2e, corrected minor errors and typos in published versio
    corecore