464 research outputs found

    The Autobiography of Dr. Russell R. Rudd (1898-1998) From Memoirs Written in 1989, Chapter I

    Get PDF
    The Autobiography of Dr. Russell R. Rudd (1898-1998) From Memoirs Written in 1989, Chapter I Dr. Russell R. Rud

    The Autobiography of Dr. Russell R. Rudd (1898-1998): From Memoirs Written in 1989, Chapter II

    Get PDF
    The Autobiography of Dr. Russell R. Rudd (1898-1998): From Memoirs Written in 1989, Chapter II Dr. Russell R. Rud

    Nutational resonances, transitional precession, and precession-averaged evolution in binary black-hole systems

    Get PDF
    In the post-Newtonian (PN) regime, the timescale on which the spins of binary black holes precess is much shorter than the radiation-reaction timescale on which the black holes inspiral to smaller separations. On the precession timescale, the angle between the total and orbital angular momenta oscillates with nutation period τ\tau, during which the orbital angular momentum precesses about the total angular momentum by an angle α\alpha. This defines two distinct frequencies that vary on the radiation-reaction timescale: the nutation frequency ω≡2π/τ\omega \equiv 2\pi/\tau and the precession frequency Ω≡α/τ\Omega \equiv \alpha/\tau. We use analytic solutions for generic spin precession at 2PN order to derive Fourier series for the total and orbital angular momenta in which each term is a sinusoid with frequency Ω−nω\Omega - n\omega for integer nn. As black holes inspiral, they can pass through nutational resonances (Ω=nω\Omega = n\omega) at which the total angular momentum tilts. We derive an approximate expression for this tilt angle and show that it is usually less than 10−310^{-3} radians for nutational resonances at binary separations r>10Mr > 10M. The large tilts occurring during transitional precession (near zero total angular momentum) are a consequence of such states being approximate n=0n=0 nutational resonances. Our new Fourier series for the total and orbital angular momenta converge rapidly with nn providing an intuitive and computationally efficient approach to understanding generic precession that may facilitate future calculations of gravitational waveforms in the PN regime.Comment: 18 pages, 9 figures, version published in PR

    Evidence for diquarks in lattice QCD

    Get PDF
    Diquarks may play an important role in hadron spectroscopy, baryon decays and color superconductivity. We investigate the existence of diquark correlations in lattice QCD by considering systematically all the lowest energy diquark channels in a color gauge-invariant setup. We measure mass differences between the various channels and show that the positive parity scalar diquark is the lightest. Quark-quark correlations inside the diquark are clearly seen in this channel, and yield a diquark size of order 1 fm.Comment: Version as published in Phys. Rev. Lett.97, 222002,2006; 4 pages, 5 figure

    Precessional Instability in Binary Black Holes with Aligned Spins.

    Get PDF
    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.D.G. is supported by the UK STFC and the Isaac Newton Studentship of the Univer- sity of Cambridge. M.K. is supported by Alfred P. Sloan Foundation grant FG-2015-65299. R.O'S. is supported by NSF grants PHY-0970074 and PHY- 1307429. A.K. and E.B. are supported by NSF CA- REER Grant PHY-1055103. E.B. acknowledges support from FCT contract IF/00797/2014/CP1214/CT0012 under the IF2014 Programme. U.S. is supported by FP7-PEOPLE-2011-CIG Grant No. 293412, FP7- PEOPLE-2011-IRSES Grant No. 295189, H2020-MSCA- RISE-2015 Grant No. StronGrHEP-690904, SDSC and TACC through XSEDE Grant No. PHY-090003 by the NSF, H2020 ERC Consolidator Grant Agree- ment No. MaGRaTh-646597, STFC Roller Grant No. ST/L000636/1 and DiRAC's Cosmos Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos. ST/H008586/1, ST/K00333X/1. D.T. is partially supported by the NSF awards PHY-1067985 and PHY-1404139.This is the author accepted manuscript. The final version is available from American Physical Society at http://dx.doi.org/10.1103/PhysRevLett.115.141102

    Deep Neural Ensemble for Retinal Vessel Segmentation in Fundus Images towards Achieving Label-free Angiography

    Full text link
    Automated segmentation of retinal blood vessels in label-free fundus images entails a pivotal role in computed aided diagnosis of ophthalmic pathologies, viz., diabetic retinopathy, hypertensive disorders and cardiovascular diseases. The challenge remains active in medical image analysis research due to varied distribution of blood vessels, which manifest variations in their dimensions of physical appearance against a noisy background. In this paper we formulate the segmentation challenge as a classification task. Specifically, we employ unsupervised hierarchical feature learning using ensemble of two level of sparsely trained denoised stacked autoencoder. First level training with bootstrap samples ensures decoupling and second level ensemble formed by different network architectures ensures architectural revision. We show that ensemble training of auto-encoders fosters diversity in learning dictionary of visual kernels for vessel segmentation. SoftMax classifier is used for fine tuning each member auto-encoder and multiple strategies are explored for 2-level fusion of ensemble members. On DRIVE dataset, we achieve maximum average accuracy of 95.33\% with an impressively low standard deviation of 0.003 and Kappa agreement coefficient of 0.708 . Comparison with other major algorithms substantiates the high efficacy of our model.Comment: Accepted as a conference paper at IEEE EMBC, 201

    The geology and geophysics of the Oslo rift

    Get PDF
    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided

    Endpoint of the up-down instability in precessing binary black holes

    Full text link
    Binary black holes in which both spins are aligned with the binary's orbital angular momentum do not precess. However, the up-down configuration, in which the spin of the heavier (lighter) black hole is aligned (anti-aligned) with the orbital angular momentum, is unstable to spin precession at small orbital separations. We first cast the spin precession problem in terms of a simple harmonic oscillator and provide a cleaner derivation of the instability onset. Surprisingly, we find that following the instability, up-down binaries do not disperse in the available parameter space but evolve toward precise endpoints. We then present an analytic scheme to locate these final configurations and confirm them with numerical integrations. Namely, unstable up-down binaries approach mergers with the two spins coaligned with each other and equally misaligned with the orbital angular momentum. Merging up-down binaries relevant to LIGO/Virgo and LISA may be detected in these endpoint configurations if the instability onset occurs prior to the sensitivity threshold of the detector. As a by-product, we obtain new generic results on binary black hole spin-orbit resonances at 2nd~post-Newtonian order. We finally apply these findings to a simple astrophysical population of binary black holes where a formation mechanism aligns the spins without preference for co- or counteralignment, as might be the case for stellar-mass black holes embedded in the accretion disk of a supermassive black hole.Comment: Animated versions of Figs. 2, 7 and 13 are available at https://davidegerosa.com/spinprecessio
    • …
    corecore