2,040 research outputs found

    Differential Imaging with a Multicolor Detector Assembly: A New ExoPlanet Finder Concept

    Full text link
    Simultaneous spectral differential imaging is a high contrast technique by which subtraction of simultaneous images reduces noise from atmospheric speckles and optical aberrations. Small non-common wave front errors between channels can seriously degrade its performance. We present a new concept, a multicolor detector assembly (MCDA), which can eliminate this problem. The device consists of an infrared detector and a microlens array onto the flat side of which a checkerboard pattern of narrow-band micro-filters is deposited, each micro-filter coinciding with a microlens. Practical considerations for successful implementation of the technique are mentioned. Numerical simulations predict a noise attenuation of 10^-3 at 0.5" for a 10^5 seconds integration on a mH=5 star of Strehl ratio 0.9 taken with an 8-m telescope. This reaches a contrast of 10^-7 at an angular distance of 0.5" from the center of the star image.Comment: 13 pages, 5 figures, accepted APJ

    Effects of Quasi-Static Aberrations in Faint Companion Searches

    Get PDF
    We present the first results obtained at CFHT with the TRIDENT infrared camera, dedicated to the detection of faint companions close to bright nearby stars. The camera's main feature is the acquisition of three simultaneous images in three wavelengths (simultaneous differential imaging) across the methane absorption bandhead at 1.6 micron, that enables a precise subtraction of the primary star PSF while keeping the companion signal. The main limitation is non-common path aberrations between the three optical paths that slightly decorrelate the PSFs. Two types of PSF calibrations are combined with the differential simultaneous imaging technique to further attenuate the PSF: reference star subtraction and instrument rotation to smooth aberrations. It is shown that a faint companion with a DeltaH of 10 magnitudes would be detected at 0.5 arcsec from the primary.Comment: 12 pages, 10 figures, to appear in Astronomy with High Contrast Imaging, EAS Publications Serie

    Hydrogen maser development at Laval University

    Get PDF
    The physical construction of two hydrogen masers is described and results of measurements made on one of the masers are given. These include: cavity Q, thermal time constant, line Q, signal power output, magnetic shielding factor. Preliminary results indicate that the frequency stability will be mainly affected by the thermal of the cavity. The magnetic field and the barometric fluctuations should not affect the maser at the stability level above a few parts in 10 to the 15th power, which is the goal for averaging times of several hours

    Scattering, Damping, and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers

    Get PDF
    We demonstrate that self-interacting dark matter models with interactions mediated by light particles can have significant deviations in the matter power-spectrum and detailed structure of galactic halos when compared to a standard cold dark matter scenario. While these deviations can take the form of suppression of small scale structure that are in some ways similar to that of warm dark matter, the self-interacting models have a much wider range of possible phenomenology. A long-range force in the dark matter can introduce multiple scales to the initial power spectrum, in the form of dark acoustic oscillations and an exponential cut-off in the power spectrum. Using simulations we show that the impact of these scales can remain observationally relevant up to the present day. Furthermore, the self-interaction can continue to modify the small-scale structure of the dark matter halos, reducing their central densities and creating a dark matter core. The resulting phenomenology is unique to this type of models.Comment: 23 pages, 11 figure

    A Dark Census: Statistically Detecting the Satellite Populations of Distant Galaxies

    Get PDF
    In the standard structure formation scenario based on the cold dark matter paradigm, galactic halos are predicted to contain a large population of dark matter subhalos. While the most massive members of the subhalo population can appear as luminous satellites and be detected in optical surveys, establishing the existence of the low mass and mostly dark subhalos has proven to be a daunting task. Galaxy-scale strong gravitational lenses have been successfully used to study mass substructures lying close to lensed images of bright background sources. However, in typical galaxy-scale lenses, the strong lensing region only covers a small projected area of the lens's dark matter halo, implying that the vast majority of subhalos cannot be directly detected in lensing observations. In this paper, we point out that this large population of dark satellites can collectively affect gravitational lensing observables, hence possibly allowing their statistical detection. Focusing on the region of the galactic halo outside the strong lensing area, we compute from first principles the statistical properties of perturbations to the gravitational time delay and position of lensed images in the presence of a mass substructure population. We find that in the standard cosmological scenario, the statistics of these lensing observables are well approximated by Gaussian distributions. The formalism developed as part of this calculation is very general and can be applied to any halo geometry and choice of subhalo mass function. Our results significantly reduce the computational cost of including a large substructure population in lens models and enable the use of Bayesian inference techniques to detect and characterize the distributed satellite population of distant lens galaxies.Comment: 21 pages + appendices, 7 figures. v2: Some derivations streamlined, extended appendices. Matches version published in PR

    Future Prospects: Deep Imaging of Galaxy Outskirts using Telescopes Large and Small

    Full text link
    The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about forty years. Recent technical advances have at last begun to erode the barriers preventing progress. In this Chapter we describe the technical challenges to low surface brightness imaging, describe some solutions, and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.Comment: 27 pages, 10 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Benchmarking quantum control methods on a 12-qubit system

    Full text link
    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.Comment: 11 pages, 4 figures, to be published in PR

    TRIDENT: an infrared camera optimized for the detection of methanated substellar companions around nearby stars

    Get PDF
    A near-infrared (0.85-2.5 microns) camera in use at the Canada-France-Hawaii Telescope and at the 1.6m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024x1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths (simultaneous differential imaging) across the methane absorption bandhead at 1.6 micron, enabling an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronagraph and features a fast (1 MHz) data acquisition system without reset anomaly, yielding high observing efficiencies on bright stars. The performance of the instrument is described, and it is illustrated by CFHT images of the nearby star Ups And. TRIDENT can detect (3 sigma) a methanated companion with DeltaH=10 at 0.5 arcsec from the star in one hour of observing time. Non-common path aberrations between the three optical paths are the limiting factors preventing further PSF attenuation. Reference star subtraction and instrument rotation improve the detection limit by one order of magnitude.Comment: 8 pages, 6 figures, to appear in SPIE 486
    • …
    corecore