1,431 research outputs found

    The geometrically-averaged density of states as a measure of localization

    Full text link
    Motivated by current interest in disordered systems of interacting electrons, the effectiveness of the geometrically averaged density of states, ρg(ω)\rho_g(\omega), as an order parameter for the Anderson transition is examined. In the context of finite-size systems we examine complications which arise from finite energy resolution. Furthermore we demonstrate that even in infinite systems a decline in ρg(ω)\rho_g(\omega) with increasing disorder strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure

    Orbital magnetization and Chern number in a supercell framework: Single k-point formula

    Full text link
    The key formula for computing the orbital magnetization of a crystalline system has been recently found [D. Ceresoli, T. Thonhauser, D. Vanderbilt, R. Resta, Phys. Rev. B {\bf 74}, 024408 (2006)]: it is given in terms of a Brillouin-zone integral, which is discretized on a reciprocal-space mesh for numerical implementation. We find here the single k{\bf k}-point limit, useful for large enough supercells, and particularly in the framework of Car-Parrinello simulations for noncrystalline systems. We validate our formula on the test case of a crystalline system, where the supercell is chosen as a large multiple of the elementary cell. We also show that--somewhat counterintuitively--even the Chern number (in 2d) can be evaluated using a single Hamiltonian diagonalization.Comment: 4 pages, 3 figures; appendix adde

    Spherical Hartree-Fock calculations with linear momentum projection before the variation.Part II: Spectral functions and spectroscopic factors

    Full text link
    The hole--spectral functions and from these the spectroscopic factors have been calculated in an Galilei--invariant way for the ground state wave functions resulting from spherical Hartree--Fock calculations with projection onto zero total linear momentum before the variation for the nuclei 4He, 12C, 16O, 28Si, 32S and 40Ca. The results are compared to those of the conventional approach which uses the ground states resulting from usual spherical Hartree--Fock calculations subtracting the kinetic energy of the center of mass motion before the variation and to the results obtained analytically with oscillator occupations.Comment: 16 pages, 22 postscript figure

    A single defect approximation for localized states on random lattices

    Full text link
    Geometrical disorder is present in many physical situations giving rise to eigenvalue problems. The simplest case of diffusion on a random lattice with fluctuating site connectivities is studied analytically and by exact numerical diagonalizations. Localization of eigenmodes is shown to be induced by geometrical defects, that is sites with abnormally low or large connectivities. We expose a ``single defect approximation'' (SDA) scheme founded on this mechanism that provides an accurate quantitative description of both extended and localized regions of the spectrum. We then present a systematic diagrammatic expansion allowing to use SDA for finite-dimensional problems, e.g. to determine the localized harmonic modes of amorphous media.Comment: final version as published, 6 pages, 1 ps-figur

    Saddle index properties, singular topology, and its relation to thermodynamical singularities for a phi^4 mean field model

    Full text link
    We investigate the potential energy surface of a phi^4 model with infinite range interactions. All stationary points can be uniquely characterized by three real numbers $\alpha_+, alpha_0, alpha_- with alpha_+ + alpha_0 + alpha_- = 1, provided that the interaction strength mu is smaller than a critical value. The saddle index n_s is equal to alpha_0 and its distribution function has a maximum at n_s^max = 1/3. The density p(e) of stationary points with energy per particle e, as well as the Euler characteristic chi(e), are singular at a critical energy e_c(mu), if the external field H is zero. However, e_c(mu) \neq upsilon_c(mu), where upsilon_c(mu) is the mean potential energy per particle at the thermodynamic phase transition point T_c. This proves that previous claims that the topological and thermodynamic transition points coincide is not valid, in general. Both types of singularities disappear for H \neq 0. The average saddle index bar{n}_s as function of e decreases monotonically with e and vanishes at the ground state energy, only. In contrast, the saddle index n_s as function of the average energy bar{e}(n_s) is given by n_s(bar{e}) = 1+4bar{e} (for H=0) that vanishes at bar{e} = -1/4 > upsilon_0, the ground state energy.Comment: 9 PR pages, 6 figure

    A Renormalization-Group approach to the Coulomb Gap

    Full text link
    The free energy of the Coulomb Gap problem is expanded as a set of Feynman diagrams, using the standard diagrammatic methods of perturbation theory. The gap in the one-particle density of states due to long-ranged interactions corresponds to a renormalization of the two-point vertex function. By collecting the leading order logarithmic corrections we have derived the standard result for the density of states in the critical dimension, d=1. This method, which is shown to be identical to the approach of Thouless, Anderson and Palmer to spin glasses, allows us to derive the strong-disorder behaviour of the density of states. The use of the renormalization group allows this derivation to be extended to all disorders, and the use of an epsilon-expansion allows the method to be extended to d=2 and d=3. We speculate that the renormalization group equations can also be derived diagrammatically, allowing a simple derivation of the crossover behaviour observed in the case of weak disorder.Comment: 16 pages, LaTeX. Diagrams available on request from [email protected]. Changes to figure 4 and second half of section

    Improved transfer matrix method without numerical instability

    Full text link
    A new improved transfer matrix method (TMM) is presented. It is shown that the method not only overcomes the numerical instability found in the original TMM, but also greatly improves the scalability of computation. The new improved TMM has no extra cost of computing time as the length of homogeneous scattering region becomes large. The comparison between the scattering matrix method(SMM) and our new TMM is given. It clearly shows that our new method is much faster than SMM.Comment: 5 pages,3 figure

    Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals

    Full text link
    We derive a multi-band formulation of the orbital magnetization in a normal periodic insulator (i.e., one in which the Chern invariant, or in 2d the Chern number, vanishes). Following the approach used recently to develop the single-band formalism [T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Phys. Rev. Lett. {\bf 95}, 137205 (2005)], we work in the Wannier representation and find that the magnetization is comprised of two contributions, an obvious one associated with the internal circulation of bulk-like Wannier functions in the interior and an unexpected one arising from net currents carried by Wannier functions near the surface. Unlike the single-band case, where each of these contributions is separately gauge-invariant, in the multi-band formulation only the \emph{sum} of both terms is gauge-invariant. Our final expression for the orbital magnetization can be rewritten as a bulk property in terms of Bloch functions, making it simple to implement in modern code packages. The reciprocal-space expression is evaluated for 2d model systems and the results are verified by comparing to the magnetization computed for finite samples cut from the bulk. Finally, while our formal proof is limited to normal insulators, we also present a heuristic extension to Chern insulators (having nonzero Chern invariant) and to metals. The validity of this extension is again tested by comparing to the magnetization of finite samples cut from the bulk for 2d model systems. We find excellent agreement, thus providing strong empirical evidence in favor of the validity of the heuristic formula.Comment: 14 pages, 8 figures. Fixed a typo in appendix
    corecore