88 research outputs found
Volatile profiling distinguishes Streptococcus pyogenes from other respiratory streptococcal species
Sore throat is one of the most common complaints encountered in the ambulatory clinical setting. Rapid, culture-independent diagnostic techniques that do not rely on pharyngeal swabs would be highly valuable as a point-of-care strategy to guide outpatient antibiotic treatment. Despite the promise of this approach, efforts to detect volatiles during oropharyngeal infection have yet been limited. In our research study, we sought to evaluate for specific bacterial volatile organic compounds (VOC) biomarkers in isolated culture
13th Meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals (SGOMSEC): alternative testing methodologies for organ toxicity.
In the past decade in vitro tests have been developed that represent a range of anatomic structure from perfused whole organs to subcellular fractions. To assess the use of in vitro tests for toxicity testing, we describe and evaluate the current status of organotypic cultures for the major target organs of toxic agents. This includes liver, kidney, neural tissue, the hematopoietic system, the immune system, reproductive organs, and the endocrine system. The second part of this report reviews the application of in vitro culture systems to organ specific toxicity and evaluates the application of these systems both in industry for safety assessment and in government for regulatory purposes. Members of the working group (WG) felt that access to high-quality human material is essential for better use of in vitro organ and tissue cultures in the risk assessment process. Therefore, research should focus on improving culture techniques that will allow better preservation of human material. The WG felt that it is also important to develop and make available relevant reference compounds for toxicity assessment in each organ system, to organize and make available via the Internet complete in vivo toxicity data, including human data, containing dose, end points, and toxicokinetics. The WG also recommended that research should be supported to identify and to validate biological end points for target organ toxicity to be used in alternative toxicity testing strategies
Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant
Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy
Phase II trial of fenretinide in advanced renal carcinoma
Purpose : Fenretinide, a synthetic form of retinoid, induced apoptosis even in chemotherapy resistant cell lines. A phase II study was hence conducted to evaluate toxicity and efficacy of fenretinide in metastatic renal cancer. Methods : Eligibility included unresectable or metastatic renal cell carcinoma (RCC), adequate organ function and Zubrod performance status ≦2. Prior immunotherapy and a maximum of one prior chemotherapy regimen were allowed. Fenretinide was administered at a dose of 900 mg/m 2 twice daily orally for 7 days in a 21-day cycle. Toxicity was assessed at the start of each cycle, and response every 2 cycles. Results : Nineteen eligible patients enrolled of which fifteen had visceral/bone metastases. Seventeen patients had prior nephrectomy and 11 had prior immunotherapy. 76 cycles of therapy were delivered. Therapy was very well tolerated with few severe toxicities consisting of thrombosis in 1 individual and grade 3 fatigue, nausea and diarrhea in 1 patient. 5 patients had grade 2 nyctalopia and 3 patients had transient grade 2 visual toxicity. No objective responses were noted. Stable disease was seen in seven of nineteen cases (37%, 90% C.I. 0.21–0.59). Median time to progression was 1.5 months and median duration of stable disease was 5.8 months (90% C.I. 3.0–8.4). Median survival was 10 months. Tumor fenretinide levels were obtained in three patients and were in the lower end of the therapeutic range. Conclusion : Fenretinide was well tolerated but demonstrated minimal activity that was consistent with results of intratumoral drug measurements. Strategies are needed that will increase systemic and tumor levels of fenretinide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45264/1/10637_2005_Article_5864.pd
Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications
Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy
- …