6,719 research outputs found
Bosonic Fields in the String-like Defect Model
We study localization of bosonic bulk fields on a string-like defect with
codimension 2 in a general space-time dimension in detail. We show that in
cases of spin 0 scalar and spin 1 vector fields there are an infinite number of
massless Kaluza-Klein (KK) states which are degenerate with respect to the
radial quantum number, but only the massless zero mode state among them is
coupled to fermion on the string-like defect. It is also commented on
interesting extensions of the model at hand to various directions such as
'little' superstring theory, conformal field theory and a supersymmetric
construction.Comment: 17 pages, LaTex 2e, revised version (to appear in Phys. Rev. D
A small angle neutron scattering study of the vortex matter in La{2-x}Sr{x}CuO{4} (x=0.17)
The magnetic phase diagram of slightly overdoped La{2-x}Sr{x}CuO{4} (x=0.17)
is characterised by a field-induced hexagonal to square transition of the
vortex lattice at low fields (~0.4 Tesla) [R. Gilardi et al., Phys. Rev. Lett.
88, 217003 (2002)]. Here we report on a small angle neutron scattering study of
the vortex lattice at higher fields, that reveals no further change of the
coordination of the square vortex lattice up to 10.5 Tesla applied
perpendicular to the CuO2 planes. Moreover, it is found that the diffraction
signal disappears at temperatures well below Tc, due to the melting of the
vortex lattice.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego,
Jan. 16-21 2003; to be published in Int. J. Mod. Phys.
Pure Spinor Approach to Type IIA Superstring Sigma Models and Free Differential Algebras
This paper considers the Free Differential Algebra and rheonomic
parametrization of type IIA Supergravity, extended to include the BRS
differential and the ghosts. We consider not only the ghosts lambda's of
supersymmetry but also the ghosts corresponding to gauge and Lorentz
transformations. In this way we can derive not only the BRS transformations of
fields and ghosts but also the standard pure spinor constraints on lambda's.
Moreover the formalism allows to derive the action for the pure spinor
formulation of type IIA superstrings in a general background, recovering the
action first obtained by Berkovits and Howe.Comment: 1+23 pages, v2: added clarifications and a reference, misprints
corrected, v3: presentation improved, results unchange
Bounds on the shear load of cohesionless granular matter
We characterize the force state of shear-loaded granular matter by relating
the macroscopic stress to statistical properties of the force network. The
purely repulsive nature of the interaction between grains naturally provides an
upper bound for the sustainable shear stress, which we analyze using an
optimization procedure inspired by the so-called force network ensemble. We
establish a relation between the maximum possible shear resistance and the
friction coefficient between individual grains, and find that anisotropies of
the contact network (or the fabric tensor) only have a subdominant effect.
These results can be considered the hyperstatic limit of the force network
ensemble and we discuss possible implications for real systems. Finally, we
argue how force anisotropies can be related quantitatively to experimental
measurements of the effective elastic constants.Comment: 17 pages, 6 figures. v2: slightly rearranged, introduction and
discussion rewritte
Free Differential Algebras and Pure Spinor Action in IIB Superstring Sigma Models
In this paper we extend to the case of IIB superstring sigma models the
method proposed in hep-th/10023500 to derive the pure spinor approach for type
IIA sigma models. In particular, starting from the (Free) Differential Algebra
and superspace parametrization of type IIB supergravity, extended to include
the BRST differential and all the ghosts, we derive the BRST transformations of
fields and ghosts as well as the standard pure spinor constraints for the
ghosts related to supersymmetry. Moreover, using the method first
proposed by us, we derive the pure spinor action for type IIB superstrings in
curved supergravity backgrounds (on shell), in full agreement with the action
first obtained by Berkovits and Howe.Comment: 24 page
Abelian 2-form gauge theory: special features
It is shown that the four -dimensional (4D) free Abelian 2-form
gauge theory provides an example of (i) a class of field theoretical models for
the Hodge theory, and (ii) a possible candidate for the quasi-topological field
theory (q-TFT). Despite many striking similarities with some of the key
topological features of the two -dimensional (2D) free Abelian (and
self-interacting non-Abelian) gauge theories, it turns out that the 4D free
Abelian 2-form gauge theory is {\it not} an exact TFT. To corroborate this
conclusion, some of the key issues are discussed. In particular, it is shown
that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form
Abelian gauge theory obey the recursion relations that are reminiscent of the
exact TFTs but the Lagrangian density of this theory is not found to be able to
be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as
is the case with the {\it topological} 2D free Abelian (and self-interacting
non-Abelian) gauge theories.Comment: LaTeX, 23 pages, journal ref. give
LET spectra measurements of charged particles in the P0006 experiment on LDEF
Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members
Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics
Experiments on isotropic compression of a granular assembly of spheres show
that the shear and bulk moduli vary with the confining pressure faster than the
1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of
contact elasticity. Moreover, the ratio between the moduli is found to be
larger than the prediction of the elastic theory by a constant value. The
understanding of these discrepancies has been a longstanding question in the
field of granular matter. Here we perform a test of the applicability of
elasticity theory to granular materials. We perform sound propagation
experiments, numerical simulations and theoretical studies to understand the
elastic response of a deforming granular assembly of soft spheres under
isotropic loading. Our results for the behavior of the elastic moduli of the
system agree very well with experiments. We show that the elasticity partially
describes the experimental and numerical results for a system under
compressional loads. However, it drastically fails for systems under shear
perturbations, particularly for packings without tangential forces and
friction. Our work indicates that a correct treatment should include not only
the purely elastic response but also collective relaxation mechanisms related
to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure
Bi-defects of Nematic Surfactant Bilayers
We consider the effects of the coupling between the orientational order of
the two monolayers in flat nematic bilayers. We show that the presence of a
topological defect on one bilayer generates a nontrivial orientational texture
on both monolayers. Therefore, one cannot consider isolated defects on one
monolayer, but rather associated pairs of defects on either monolayer, which we
call bi-defects. Bi-defects generally produce walls, such that the textures of
the two monolayers are identical outside the walls, and different in their
interior. We suggest some experimental conditions in which these structures
could be observed.Comment: RevTeX, 4 pages, 3 figure
- …