4,946 research outputs found

    Sunjammer

    Get PDF
    No abstract available

    OH-equivalent temperatures derived from ACE-FTS and SABER temperature profiles – a comparison with OH*(3-1) temperatures from Maynooth (53.2 N, 6.4 W)

    Get PDF
    OH-equivalent temperatures were derived from all of the temperature profiles retrieved in 2004 and 2005 by the ACE-FTS instrument in a 5 degree band of latitude centred on a ground-based observing station at Maynooth. A globally averaged OH volume emission rate (VER) profile obtained from WINDII data was employed as a weighting function to compute the equivalent temperatures. The annual cycle of temperature thus produced was compared with the annual cycle of temperatures recorded at the ground-based station more than a decade earlier from the OH*(3-1) Meinel band. Both data sets showed excellent agreement in the absolute value of the temperature minimum (~162 K) and in its time of occurrence in the annual cycle at summer solstice. Away from mid-summer, however, the temperatures diverged and reach a maximum disagreement of more than 20K in mid-winter. Comparison of the Maynooth ground-based data with the corresponding results from two nearby stations in the same time-period indicated that the Maynooth data are consistent with other ground stations. The temperature difference between the satellite and ground-based datasets in winter was reduced to 14–15K by lowering the peak altitude of the weighting function to 84 km. An unrealistically low peak altitude would be required, however, to bring temperatures derived from the satellite into agreement with the ground-based data. OH equivalent temperatures derived from the SABER instrument using the same weighting function produced results that agreed well with ACE-FTS. When the OH 1.6μm VER profile measured by SABER was used as the weighting function, the OH equivalent temperatures increased in winter as expected but the summer temperatures were reduced resulting in an approximately constant offset of 8.6±0.8K between ground and satellite values with the ground values higher. Variability in both the altitude and width of the OH layer within a discernable seasonal variation were responsible for the changes introduced. The higher temperatures in winter were due to primarily to the lower altitude of the OH layer, while the colder summer temperatures were due to a thinner summer OH layer. We are not aware of previous reports of the effect of the layer width on ground-based temperatures. Comparison of OH-equivalent temperatures derived from ACE-FTS and SABER temperature profiles with OH*(3-1) temperatures from Wuppertal at 51.3 N which were measured during the same period showed a similar pattern to the Maynooth data from a decade earlier, but the warm offset of the ground values was lower at 4.5±0.5 K. This discrepancy between temperatures derived from ground-based instruments recording hydroxyl spectra and satellite borne instruments has been observed by other observers. Further work will be required by both the satellite and ground-based communities to identify the exact cause of this difference

    OH-equivalent temperatures derived from ACE-FTS and SABER temperature profiles – a comparison with OH*(3-1) temperatures from Maynooth (53.2 N, 6.4 W)

    Get PDF
    OH-equivalent temperatures were derived from all of the temperature profiles retrieved in 2004 and 2005 by the ACE-FTS instrument in a 5 degree band of latitude centred on a ground-based observing station at Maynooth. A globally averaged OH volume emission rate (VER) profile obtained from WINDII data was employed as a weighting function to compute the equivalent temperatures. The annual cycle of temperature thus produced was compared with the annual cycle of temperatures recorded at the ground-based station more than a decade earlier from the OH*(3-1) Meinel band. Both data sets showed excellent agreement in the absolute value of the temperature minimum (~162 K) and in its time of occurrence in the annual cycle at summer solstice. Away from mid-summer, however, the temperatures diverged and reach a maximum disagreement of more than 20K in mid-winter. Comparison of the Maynooth ground-based data with the corresponding results from two nearby stations in the same time-period indicated that the Maynooth data are consistent with other ground stations. The temperature difference between the satellite and ground-based datasets in winter was reduced to 14–15K by lowering the peak altitude of the weighting function to 84 km. An unrealistically low peak altitude would be required, however, to bring temperatures derived from the satellite into agreement with the ground-based data. OH equivalent temperatures derived from the SABER instrument using the same weighting function produced results that agreed well with ACE-FTS. When the OH 1.6μm VER profile measured by SABER was used as the weighting function, the OH equivalent temperatures increased in winter as expected but the summer temperatures were reduced resulting in an approximately constant offset of 8.6±0.8K between ground and satellite values with the ground values higher. Variability in both the altitude and width of the OH layer within a discernable seasonal variation were responsible for the changes introduced. The higher temperatures in winter were due to primarily to the lower altitude of the OH layer, while the colder summer temperatures were due to a thinner summer OH layer. We are not aware of previous reports of the effect of the layer width on ground-based temperatures. Comparison of OH-equivalent temperatures derived from ACE-FTS and SABER temperature profiles with OH*(3-1) temperatures from Wuppertal at 51.3 N which were measured during the same period showed a similar pattern to the Maynooth data from a decade earlier, but the warm offset of the ground values was lower at 4.5±0.5 K. This discrepancy between temperatures derived from ground-based instruments recording hydroxyl spectra and satellite borne instruments has been observed by other observers. Further work will be required by both the satellite and ground-based communities to identify the exact cause of this difference

    Submillimeter-wave dumps for fusion plasma diagnostics

    Get PDF

    On the Cognition of States of Affairs

    Get PDF
    The theory of speech acts put forward by Adolf Reinach in his "The A Priori Foundations of the Civil Law" of 1913 rests on a systematic account of the ontological structures associated with various different sorts of language use. One of the most original features of Reinach's account lies in hIs demonstration of how the ontological structure of, say, an action of promising or of commanding, may be modified in different ways, yielding different sorts of non-standard instances of the corresponding speech act varieties. The present paper is an attempt to apply this idea of standard and modified instances of ontological structures to the realm of judgement and cognition, and thereby to develop a Reinachian theory of how intentionality is mediated through language in acts of thinking and speaking

    Li non-stoichiometry and crystal growth of untwinned 1D quantum spin system Lix Cu2 O2

    Get PDF
    Floating-zone growth of untwinned single crystal of Li_xCu_2O_2 with high Li content of x ~ 0.99 is reported. Li content of Li_xCu_2O_2 has been determined accurately through combined iodometric titration and thermogravimetric methods, which also ruled out the speculation of chemical disorder between Li and Cu ions. The morphology and physical properties of single crystals obtained from slowing-cooling (SL) and floating-zone (FZ) methods are compared. The floating-zone growth under Ar/O_2=7:1 gas mixture at 0.64 MPa produces large area of untwinned crystal with highest Li content, which has the lowest helimagnetic ordering temperature ~19K in the Li_xCu_2O_2 system.Comment: 4 pages, 3 figure

    The application of mechanical diagnosis and therapy in lateral epicondylalgia

    Get PDF
    Background: lateral epicondylalgia (LE) is a musculoskeletal diagnosis that causes pain and dysfunction in the lateral aspect of the elbow. Mechanical diagnosis and therapy (MDT) is an orthopaedic classification and treatment system based on mechanical and symptomatic response to repeated and sustained end-range movement. There has been no investigation of the association between MDT and patients diagnosed with LE. Case description: this report presents three patients matching the currently accepted diagnostic criteria for LE, two with a diagnosis of lateral epicondylitis (tennis elbow) from a medical doctor. These patients were classified and treated by a diplomat of MDT and two third-year doctoral students of physical therapy using MDT. Outcomes: short- and long-term (one year) outcomes were excellent, demonstrating rapid abolishment of symptoms and return to prior levels of function in 3–6 visits between 11–59 days. Patients demonstrated the ability to prevent and manage reoccurrence of symptoms independently without seeking further health care. Discussion: this case series raises questions about whether or not the pathologies traditionally associated with the aetiology of LE are actually at fault. Moreover, it raises questions about the utility of special tests typically utilized to identify those structures. The series provides preliminary evidence that MDT may be capable of providing effective short- and long-term outcomes in the management of LE. Level of Evidence: 4 Keywords: Mechanical diagnosis and therapy, Lateral epicondylalgia, Case serie

    Phagocytes and the Lung

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72927/1/j.1749-6632.1997.tb46258.x.pd
    • …
    corecore