1,915 research outputs found

    Nonlocality vs. complementarity: a conservative approach to the information problem

    Full text link
    A proposal for resolution of the information paradox is that "nice slice" states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information *problem*, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small revisions to match final journal versio

    REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

    Get PDF
    Reflective electro-absorption modulation-intensity modulators (REAM-IMs) are utilized, for the first time, to experimentally demonstrate colorless ONUs in single-fiber-based, bidirectional, intensity-modulation and direct-detection (IMDD), optical OFDM PONs (OOFDM-PONs) incorporating 25km SSMFs and OLT-side-seeded CW optical signals. The colorlessness of the REAM-IMs is characterized, based on which optimum REAM-IM operating conditions are identified. In the aforementioned PON architecture, 10Gb/s colorless upstream transmissions of end-to-end realtime OOFDM signals are successfully achieved for various wavelengths within the entire C-band. Over such a wavelength window, corresponding minimum received optical powers at the FEC limit vary in a range as small as <0.5dB. In addition, experimental measurements also indicate that Rayleigh backscattering imposes a 2.8dB optical power penalty on the 10Gb/s over 25km upstream OOFDM signal transmission. Furthermore, making use of on-line adaptive bit and power loading, a linear trade-off between aggregated signal line rate and optical power budget is observed, which shows that, for the present PON system, a 10% reduction in signal line rate can improve the optical power budget by 2.6dB. © 2012 Optical Society of America

    Strong gravitational lensing by braneworld black holes

    Full text link
    In this paper, we use the strong field limit approach to investigate the gravitational lensing properties of braneworld black holes. Applying this method to the supermassive black hole at the centre of our galaxy, the lensing observables for some candidate braneworld black hole metrics are compared with those for the standard Schwarzschild case. It is found that braneworld black holes could have significantly different observational signatures to the Schwarzschild black hole.Comment: 8 pages, 4 figures, RevTeX4; v2 reference added; v3 minor technical correctio

    Scales and hierarchies in warped compactifications and brane worlds

    Full text link
    Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined soley by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kahler potential, including the effects of warping. We identify matter living on certain branes to be effectively sequestered from the supersymmetry breaking fluxes: specifically, such "visible sector" fields receive no tree-level masses from the supersymmetry breaking. However, loop corrections are expected to generate masses, at the phenomenologically viable TeV scale.Comment: 33 pages, LaTeX. v2: reference added v3: reference added, typos correcte

    The gravitational S-matrix

    Get PDF
    We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in complex s at fixed physical momentum transfer. We explore the hypothesis that such behavior corresponds to a nonlocality intrinsic to gravity, but consistent with unitarity, analyticity, crossing, and causality.Comment: 46 pages, 10 figure

    Exact monopole instantons and cosmological solutions in string theory from abelian dimensional reduction

    Get PDF
    We compute the exact string vacuum backgrounds corresponding to the non-compact coset theory SU(2,1)/SU(2)SU(2,1)/SU(2). The conformal field theory defined by the level k=4k= 4 results in a five dimensional singular solution that factorizes in an asymptotic region as the linear dilaton solution and a S3S^3 model. It presents two abelian compact isometries that allow to reinterpreting it from a four dimensional point of view as a stationary and magnetically charged space-time resembling in some aspects the Kerr-Newman solution of general relativity. The k=137k=\frac{13}{7} theory on the other hand describes a cosmological solution that interpolates between a singular phase at short times and a S1×S2S^1 \times S^2 universe after some planckian times.Comment: 18 pages, section 5 replaced by 5 and 6, references added; to appear in Phys. Rev.

    Small Black Holes on Branes: Is the horizon regular or singular ?

    Full text link
    We investigate the following question: Consider a small mass, with ϵ\epsilon (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ϵ\epsilon and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ϵ\epsilon we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.Comment: Accepted for publication in PR

    Magnetic Wormholes and Vertex Operators

    Full text link
    We consider wormhole solutions in 2+12+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from magnetic wormhole action of Gupta, Hughes, Preskill and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed. ( To be published in Phys. Rev. D15)Comment: 18 pages of RevTex, preprint IP/BBSR/94-2

    Charged Rotating Black Holes on a 3-Brane

    Full text link
    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superceded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the "squared" energy momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of non-uniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles.Comment: RevTeX 4, 33 pages, 4 figures, new references adde
    • …
    corecore