28,495 research outputs found
Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope
Science objectives for the Next Generation Space Telescope (NGST) include a
large component of galaxy surveys, both imaging and spectroscopy. The Hubble
Deep Field datasets include the deepest observations ever made in the
ultraviolet, optical and near infrared, reaching depths comparable to that
expected for NGST spectroscopy. We present the source counts, galaxy sizes and
isophotal filling factors of the HDF-South images. The observed integrated
galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend
these counts to faint levels in the infrared using models. The trend previously
seen that fainter galaxies are smaller, continues to AB=29 in the high
resolution HDF-S STIS image, where galaxies have a typical half-light radius of
0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured
sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS
image, we show that galaxies are smaller in the near infrared than they are in
the optical. We analyze the isophotal filling factor of the HDF-S STIS image,
and show that this image is mostly empty sky even at the limits of galaxy
detection, a conclusion we expect to hold true for NGST spectroscopy. At the
surface brightness limits expected for NGST imaging, however, about a quarter
of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the
implications of these data on several design concepts of the NGST near-infrared
spectrograph. We compare the effects of resolution and the confusion limit of
various designs, as well as the multiplexing advantages of either multi-object
or full-field spectroscopy. We argue that the optimal choice for NGST
spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS)
with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the
Astronomical Journal, June 2000, abridged abstrac
Electrically detected magnetic resonance using radio-frequency reflectometry
The authors demonstrate readout of electrically detected magnetic resonance
at radio frequencies by means of an LCR tank circuit. Applied to a silicon
field-effect transistor at milli-kelvin temperatures, this method shows a
25-fold increased signal-to-noise ratio of the conduction band electron spin
resonance and a higher operational bandwidth of > 300 kHz compared to the kHz
bandwidth of conventional readout techniques. This increase in temporal
resolution provides a method for future direct observations of spin dynamics in
the electrical device characteristics.Comment: 9 pages, 3 figure
Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079
We present spectroscopic data of ionized gas in the disk--halo regions of
three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength
range from [\ion{O}{2}] 3727\AA to [\ion{S}{2}] 6716.4\AA.
The inclusion of the [\ion{O}{2}] emission provides new constraints on the
properties of the diffuse ionized gas (DIG), in particular, the origin of the
observed spatial variations in the line intensity ratios. We used three
different methods to derive electron temperatures, abundances and ionization
fractions along the slit. The increase in the [\ion{O}{2}]/H line ratio
towards the halo in all three galaxies requires an increase either in electron
temperature or in oxygen abundance. Keeping the oxygen abundance constant
yields the most reasonable results for temperature, abundances, and ionization
fractions. Since a constant oxygen abundance seems to require an increase in
temperature towards the halo, we conclude that gradients in the electron
temperature play a significant role in the observed variations in the optical
line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure
Spin gating electrical current
We use an aluminium single electron transistor with a magnetic gate to
directly quantify the chemical potential anisotropy of GaMnAs materials.
Uniaxial and cubic contributions to the chemical potential anisotropy are
determined from field rotation experiments. In performing magnetic field sweeps
we observe additional isotropic magnetic field dependence of the chemical
potential which shows a non-monotonic behavior. The observed effects are
explained by calculations based on the kinetic
exchange model of ferromagnetism in GaMnAs. Our device inverts the conventional
approach for constructing spin transistors: instead of spin-transport
controlled by ordinary gates we spin-gate ordinary charge transport.Comment: 5 pages, 4 figure
Twisted [(R3P)PdX] groups above dicarbaborane ligands: 4-dimethylsulfido-3-iodo-3-triphenylphosphine-closo-3-pallada-1,2-dicarbadodecaborane and 3-dimethylphenylphosphine-3-chloro-4-dimethylsulfido-closo-3-pallada-1,2-dicarbadodecaborane
The structural analyses of [3-(PPh₃)-3-I-4-(SMe₂)-closo-3,1,2-PdC₂B₉H₁₀] or [Pd(C₄H₁₆B₉S)I(C₁₈H₁₅P)], (I), and [3-(PPhMe₂)-3-Cl-4-(SMe₂)-closo-3,1,2-PdC₂B₉H₁₀] or [Pd(C₄H₁₆B₉S)Cl(C₈H₁₁P)], (II), show that in comparison with [3-(PR₃)2-closo-3,1,2-PdC₂B₉H₁₁] the presence of the 4-SMe₂ group causes the [PdX(PR₃)] unit (X = halogen) to twist about an axis passing through the Pd atom and the directly opposite B atom of the carbaborane ligand. The halogen atoms are located almost directly above a C atom in the C₂B₃ face, and the conformations of the [PdX(PR₃)] units above the C₂B₃ faces are not those predicted from molecular orbital calculations of the closo-3,1,2-PdC₂B₉ system. The fact that the variation from the predicted conformation is greater in the case of (I) than in (II) may be ascribed to the greater steric interactions induced by the I atom in (I) compared with the Cl atom in (II)
On a model mechanism for the spatial patterning of teeth primordia in the Alligator
We propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator,Alligator mississippiensis. Detailed embryological studies by Westergaard & Ferguson (1986, 1987, 1990) show that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. Based on biological data we develop a reaction-diffusion mechanism, which crucially includes domain growth. The model can reproduce the spatial pattern development of the first seven teeth primordia in the lower half jaw ofA. mississippiensis. The results for the precise spatio-temporal sequence compare well with detailed developmental experiments
Energy gap measurement of nanostructured thin aluminium films for use in single Cooper-pair devices
Within the context of superconducting gap engineering, Al-\alox-Al tunnel
junctions have been used to study the variation in superconducting gap,
, with film thickness. Films of thickness 5, 7, 10 and 30 nm were used
to form the small area superconductor-insulator-superconductor (SIS) tunnel
junctions. In agreement with previous measurements we have observed an increase
in the superconducting energy gap of aluminium with a decrease in film
thickness. In addition, we find grain size in small area films with thickness
\textbf{} 10 nm has no appreciable effect on energy gap. Finally, we
utilize 7 and 30 nm films in a single Cooper-pair transistor, and observe the
modification of the finite bias transport processes due to the engineered gap
profile
- …