77,955 research outputs found

    New line-interactive UPS system with DSP-based active power-line conditioning

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.---- Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

    Phantom Energy Accretion onto Black Holes in Cyclic Universe

    Full text link
    Black holes pose a serious problem in the cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by the phantom energy before turnaround before they can create any problems. In this paper, using the mechanism of the phantom accretion onto black holes, we find that black holes do not disappear before the phantom turnaround. But the remanent black holes will not cause any problems due to the Hawking evaporation.Comment: 8 pages, no figure; typographical errors are correcte

    Quantization of a Friedmann-Robertson-Walker model in N=1 Supergravity with Gauged Supermatter

    Get PDF
    The theory of N = 1 supergravity with gauged supermatter is studied in the context of a k = + 1 Friedmann minisuperspace model. It is found by imposing the Lorentz and supersymmetry constraints that there are {\seveni no} physical states in the particular SU(2) model studied.Comment: 5 pages, Talk at the 1st Mexican School in Gravitation and mathematical physics, Guanajuato, Mexico, December 12-16 199

    Local Density of States and Angle-Resolved Photoemission Spectral Function of an Inhomogeneous D-wave Superconductor

    Full text link
    Nanoscale inhomogeneity seems to be a central feature of the d-wave superconductivity in the cuprates. Such a feature can strongly affect the local density of states (LDOS) and the spectral weight functions. Within the Bogoliubov-de Gennes formalism we examine various inhomogeneous configurations of the superconducting order parameter to see which ones better agree with the experimental data. Nanoscale large amplitude oscillations in the order parameter seem to fit the LDOS data for the underdoped cuprates. The one-particle spectral function for a general inhomogeneous configuration exhibits a coherent peak in the nodal direction. In contrast, the spectral function in the antinodal region is easily rendered incoherent by the inhomogeneity. This throws new light on the dichotomy between the nodal and antinodal quasiparticles in the underdoped cuprates.Comment: 5 pages, 9 pictures. Phys. Rev. B (in press

    Does being motivated to avoid procedural errors influence their systematicity?

    Get PDF

    Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    Full text link
    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure

    Field Scanner Design for MUSTANG of the Green Bank Telescope

    Full text link
    MUSTANG is a bolometer camera for the Green Bank Telescope (GBT) working at a frequency of 90 GHz. The detector has a field of view of 40 arcseconds. To cancel out random emission change from atmosphere and other sources, requires a fast scanning reflecting system with a few arcminute ranges. In this paper, the aberrations of an off-axis system are reviewed. The condition for an optimized system is provided. In an optimized system, as additional image transfer mirrors are introduced, new aberrations of the off-axis system may be reintroduced, resulting in a limited field of view. In this paper, different scanning mirror arrangements for the GBT system are analyzed through the ray tracing analysis. These include using the subreflector as the scanning mirror, chopping a flat mirror and transferring image with an ellipse mirror, and chopping a flat mirror and transferring image with a pair of face-to-face paraboloid mirrors. The system analysis shows that chopping a flat mirror and using a well aligned pair of paraboloids can generate the required field of view for the MUSTUNG detector system, while other systems all suffer from larger off-axis aberrations added by the system modification. The spot diagrams of the well aligned pair of paraboloids produced is only about one Airy disk size within a scanning angle of about 3 arcmin.Comment: 7 pages, 9 figure
    • …
    corecore