1,319 research outputs found

    The Suppression and Recovery of the Ferroelectric Phase in Multiferroic MnWO4MnWO_4

    Full text link
    We report the discovery of a complete suppression of ferroelectricity in MnWO4MnWO_4 by 10 % iron substitution and its restoration in external magnetic fields. The spontaneous polarization in Mn0.9Fe0.1WO4Mn_{0.9}Fe_{0.1}WO_4 arises below 12 K in external fields above 4 T. The magnetic/ferroelectric phase diagram is constructed from the anomalies of the dielectric constant, polarization, magnetization, and heat capacity. The observations are qualitatively described by a mean field model with competing interactions and strong anisotropy. We propose that the magnetic field induces a non-collinear inversion symmetry breaking magnetic structure in Mn0.9Fe0.1WO4Mn_{0.9}Fe_{0.1}WO_4

    Robust Ferroelectric State in Multiferroic Mn1−x_{1-x}Znx_xWO4_4

    Full text link
    We report the remarkably robust ferroelectric state in the multiferroic compound Mn1−x_{1-x}Znx_xWO4_4. The substitution of the magnetic Mn2+^{2+} with nonmagnetic Zn2+^{2+} reduces the magnetic exchange and provides control of the various magnetic and multiferroic states of MnWO4_4. Only 5 % of Zn substitution results in a complete suppression of the frustrated collinear (paraelectric) low temperature phase. The helical magnetic and ferroelectric phase develops as the ground state. The multiferroic state is stable up to a high level of substitution of more than 50 %. The magnetic, thermodynamic, and dielectric properties as well as the ferroelectric polarization of single crystals of Mn1−x_{1-x}Znx_xWO4_4 are studied for different substitutions up to x=0.5. The magnetic phases have been identified in single crystal neutron scattering experiments. The ferroelectric polarization scales with the neutron intensity of the incommensurate peak of the helical phase.Comment: 6 pages, 8 figure

    Magnetoelectric Effect and Spontaneous Polarization in HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4

    Full text link
    The thermodynamic, magnetic, dielectric, and magnetoelectric properties of HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 are investigated. Both compounds show a second order Ne\'{e}l transition above 30 K and a first order spin reorientation transition below 10 K. HoFe3_3(BO3_3)4_4 develops a spontaneous electrical polarization below the Ne\'{e}l temperature (TN_N) which is diminished in external magnetic fields. No magnetoelectric effect could be observed in HoFe3_3(BO3_3)4_4. In contrast, the solid solution Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 exhibits both, a spontaneous polarization below TN_N and a magnetoelectric effect at higher fields that extends to high temperatures. The superposition of spontaneous polarization, induced by the internal magnetic field in the ordered state, and the magnetoelectric polarizations due to the external field results in a complex behavior of the total polarization measured as a function of temperature and field.Comment: 12 pages, 15 figure

    Magnetoelectricity and Magnetostriction due to the Rare Earth Moment in TmAl3_3(BO3_3)4_4

    Full text link
    The magnetic properties, the magnetostriction, and the magnetoelectric effect in the d-electron free rare-earth aluminum borate TmAl3_3(BO3_3)4_4 are investigated between room temperature and 2 K. The magnetic susceptibility reveals a strong anisotropy with the hexagonal c-axis as the hard magnetic axis. Magnetostriction measurements show a large effect of an in-plane field reducing both, the a- and c-axis lattice parameters. The magnetoelectric polarization change in a- and c-directions reaches up to 300 μ\muC/m2^2 at 70 kOe with the field applied along the a-axis. The magnetoelectric polarization is proportional to the lattice contraction in magnetic field. The results of this investigation prove the existence of a significant coupling between the rare earth magnetic moment and the lattice in RRAl3_3(BO3_3)4_4 compounds (RR = rare earth). They further show that the rare earth moment itself will generate a large magnetoelectric effect which makes it easier to study and to understand the origin of the magnetoelectric interaction in this class of materials.Comment: 4 pages, 5 figure

    Competitive Allocation of a Mixed Manna

    Get PDF
    We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica'17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemke's scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Pressure-induced polarization reversal in multiferroic YMn2O5YMn_2O_5

    Full text link
    The low-temperature ferroelectric polarization of multiferroic YMn2O5YMn_2O_5 is completely reversed at a critical pressure of 10 kbar and the phase transition from the incommensurate to the commensurate magnetic phase is induced by pressures above 14 kbar. The high-pressure data correlate with thermal expansion measurements indicating a significant lattice strain at the low-temperature transition into the incommensurate phase. The results support the exchange striction model for the ferroelectricity in multiferroic RMn2O5RMn_2O_5 compounds and they show the importance of magnetic frustration as well as the spin-lattice coupling

    Transport and bistable kinetics of a Brownian particle in a nonequilibrium environment

    Full text link
    A system reservoir model, where the associated reservoir is modulated by an external colored random force, is proposed to study the transport of an overdamped Brownian particle in a periodic potential. We then derive the analytical expression for the average velocity, mobility, and diffusion rate. The bistable kinetics and escape rate from a metastable state in the overdamped region are studied consequently. By numerical simulation we then demonstrate that our analytical escape rate is in good agreement with that of numerical result.Comment: 10 pages, 2 figures, RevTex4, minor correction

    Theoretical analysis of neutron scattering results for quasi-two dimensional ferromagnets

    Full text link
    A theoretical study has been carried out to analyse the available results from the inelastic neutron scattering experiment performed on a quasi-two dimensional spin-1/2 ferromagnetic material K2CuF4K_2CuF_4. Our formalism is based on a conventional semi-classical like treatment involving a model of an ideal gas of vortices/anti-vortices corresponding to an anisotropic XY Heisenberg ferromagnet on a square lattice. The results for dynamical structure functions for our model corresponding to spin-1/2, show occurrence of negative values in a large range of energy transfer even encompassing the experimental range, when convoluted with a realistic spectral window function. This result indicates failure of the conventional theoretical framework to be applicable to the experimental situation corresponding to low spin systems. A full quantum formalism seems essential for treating such systems.Comment: 16 pages, 6 figures, 1 Table Submitted for publicatio
    • …
    corecore