9,455 research outputs found

    A global simulation for laser driven MeV electrons in 50μm50\mu m-diameter fast ignition targets

    Full text link
    The results from 2.5-dimensional Particle-in-Cell simulations for the interaction of a picosecond-long ignition laser pulse with a plasma pellet of 50-μm\mu m diameter and 40 critical density are presented. The high density pellet is surrounded by an underdense corona and is isolated by a vacuum region from the simulation box boundary. The laser pulse is shown to filament and create density channels on the laser-plasma interface. The density channels increase the laser absorption efficiency and help generate an energetic electron distribution with a large angular spread. The combined distribution of the forward-going energetic electrons and the induced return electrons is marginally unstable to the current filament instability. The ions play an important role in neutralizing the space charges induced by the the temperature disparity between different electron groups. No global coalescing of the current filaments resulted from the instability is observed, consistent with the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006

    Dynamic multiscale spatiotemporal models for Poisson data

    Get PDF
    We propose a new class of dynamic multiscale models for Poisson spatiotemporal processes. Specifically, we use a multiscale spatial Poisson factorization to decompose the Poisson process at each time point into spatiotemporal multiscale coefficients. We then connect these spatiotemporal multiscale coefficients through time with a novel Dirichlet evolution. Further, we propose a simulation-based full Bayesian posterior analysis. In particular, we develop filtering equations for updating of information forward in time and smoothing equations for integration of information backward in time, and use these equations to develop a forward filter backward sampler for the spatiotemporal multiscale coefficients. Because the multiscale coefficients are conditionally independent a posteriori, our full Bayesian posterior analysis is scalable, computationally efficient, and highly parallelizable. Moreover, the Dirichlet evolution of each spatiotemporal multiscale coefficient is parametrized by a discount factor that encodes the relevance of the temporal evolution of the spatiotemporal multiscale coefficient. Therefore, the analysis of discount factors provides a powerful way to identify regions with distinctive spatiotemporal dynamics. Finally, we illustrate the usefulness of our multiscale spatiotemporal Poisson methodology with two applications. The first application examines mortality ratios in the state of Missouri, and the second application considers tornado reports in the American Midwest

    Beam loading in the nonlinear regime of plasma-based acceleration

    Full text link
    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the Particle-In-Cell code OSIRIS.Comment: 5 pages, 2 figures, to appear in Physical Review Letter

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    Ion acceleration from laser-driven electrostatic shocks

    Get PDF
    Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increasing density ratio and relative drift velocity between the two interacting plasmas. It is shown that the interaction of intense lasers with tailored near-critical density plasmas allows for the efficient heating of the plasma electrons and steepening of the plasma profile at the critical density interface, leading to the generation of high-velocity shock structures and high-energy ion beams. Our results indicate that high-quality 200 MeV shock-accelerated ion beams required for medical applications may be obtained with current laser systems.Comment: 33 pages, 12 figures, accepted for publication in Physics of Plasma

    Lapse risk modelling in insurance: a Bayesian mixture approach

    Full text link
    This paper focuses on modelling surrender time for policyholders in the context of life insurance. In this setup, a large lapse rate at the first months of a contract is often observed, with a decrease in this rate after some months. The modelling of the time to cancellation must account for this specific behaviour. Another stylised fact is that policies which are not cancelled in the study period are considered censored. To account for both censuring and heterogeneous lapse rates, this work assumes a Bayesian survival model with a mixture of regressions. The inference is based on data augmentation allowing for fast computations even for data sets of over a million clients. Moreover, scalable point estimation based on EM algorithm is also presented. An illustrative example emulates a typical behaviour for life insurance contracts and a simulated study investigates the properties of the proposed model. In particular, the observed censuring in the insurance context might be up to 50% of the data, which is very unusual for survival models in other fields such as epidemiology. This aspect is exploited in our simulated study

    Laser-driven shock acceleration of monoenergetic ion beams

    Get PDF
    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate ∼200\sim 200 MeV proton beams with state-of-the-art 100 TW class laser systems.Comment: 13 pages, 4 figures, accepted for publication in Physical Review Letter

    Photodisintegration of the triton with realistic potentials

    Get PDF
    The process γ+t→n+d\gamma + t \to n + d is treated by means of three-body integral equations employing in their kernel the W-Matrix representation of the subsystem amplitudes. As compared to the plane wave (Born) approximation the full solution of the integral equations, which takes into account the final state interaction, shows at low energies a 24% enhancement. The calculations are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B potentials. For comparison with earlier calculations we also present results for the Yamaguchi potential. In the low-energy region a remarkable potential dependence is observed, which vanishes at higher energies.Comment: 16 pages REVTeX, 8 postscript figures included, uses epsfig.st
    • …
    corecore