348 research outputs found

    A note on conductivity and charge diffusion in holographic flavour systems

    Full text link
    We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<< N_c flavour degrees of freedom at finite temperature and nonvanishing U(1) baryon number chemical potential. We provide a new derivation of the results that generalize the membrane paradigm to the present context. We perform a numerical analysis in the particular case of the D3/D7 flavor system. The results obtained support the validity of the Einstein relation at finite chemical potential.Comment: 15 pages, 3 figures, v2 with minor correction

    AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields

    Full text link
    We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directions. We show that at finite temperature, i.e. in the AdS-Schwarzschild background, the B field has a stabilizing effect on the mesons and chiral symmetry breaking occurs for a sufficiently large value of the B field. Then we turn to the electric case of a B field in the temporal direction and one spatial boundary direction. In this case, there is a singular region in which it is necessary to turn on a gauge field on the brane in order to ensure reality of the brane action. We find that the brane embeddings are attracted towards this region. Far away from this region, in the weak field case at zero temperature, we investigate the meson spectrum and find a mass shift similar to the Stark effect.Comment: 34 pages, 18 figures, v2: added references and comments on mode decoupling, on thermodynamics and holographic renormalisation, JHEP style, v3: Final published versio

    Challenges facing holographic models of QCD

    Full text link
    This paper, written in memory of Manoj Banerjee, takes a critical look at holographic models of QCD focusing on ``practical'' models in which the five dimensional theory is treated classically. A number of theoretical and phenomenological challenges to the approach are discussed.Comment: This paper was written for an issue in memory of Manoj Banerjee in the Indian Journal of Physic

    High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at YanartaÅƾ (Chimera), Turkey

    Get PDF
    Gas seeps emanating from ophiolites at YanartaƟ (Chimaera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at YanartaƟ. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. ή13C ratios of the organic carbon fraction of solids are depleted (−25 to −28 ‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. ή15N ratios ~ 3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions

    Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD

    Full text link
    We consider a new approach towards constructing approximate holographic duals of QCD from experimental hadron properties. This framework allows us to derive a gravity dual which reproduces the empirically found linear square-mass trajectories of universal slope for radially and orbitally excited hadrons. Conformal symmetry breaking in the bulk is exclusively due to infrared deformations of the anti-de Sitter metric and governed by one free mass scale proportional to Lambda_QCD. The resulting background geometry exhibits dual signatures of confinement and provides the first examples of holographically generated linear trajectories in the baryon sector. The predictions for the light hadron spectrum include new relations between trajectory slopes and ground state masses and are in good overall agreement with experiment.Comment: 33 pages, 5 figures, updated to the extended version published in JHEP, vector meson bulk potential and metric corrected, comments and references added, phenomenology and conclusions unchange

    Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas

    Get PDF
    We study the AC optical and hall conductivities of Dp/Dq-branes intersections in the probe approximation and use sum-rules to study various associated transport coefficients. We determine that the presence of massive fundamental matter, as compared to massless fundamental matter described holographically by a theory with no dimensional defects, reduces the plasma frequency. We further show that this is not the case when the brane intersections include defects. We discuss in detail how to implement correctly the regularization of retarded Green's functions so that the dispersion relations are satisfied and the low energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio

    NGN, QCD_2 and chiral phase transition from string theory

    Get PDF
    We construct a D2-D8-D8ˉ\bar{D8} configuration in string theory, it can be described at low energy by two dimensional field theory. In the weak coupling region, the low energy theory is a nonlocal generalization of Gross-Neveu(GN) model which dynamically breaks the chiral flavor symmetry U(Nf)L×U(Nf)RU(N_f)_L \times U(N_f)_R at large NcN_c and finite NfN_f. However, in the strong coupling region, we can use the SUGRA/Born-Infeld approximation to describe the low energy dynamics of the system. Also, we analyze the low energy dynamics about the configuration of wrapping the one direction of D2 brane on a circle with anti-periodic boundary condition of fermions. The fermions and scalars on D2 branes get mass and decouple from the low energy theory. The IR dynamics is described by the QCD2QCD_2 at weak coupling. In the opposite region, the dynamics has a holographic dual description. And we have discussed the phase transition of chiral symmetry breaking at finite temperature. Finally, after performing T-duality, this configuration is related to some other brane configurations.Comment: 30 pages, 3 figures, minor change

    Embedding Flipped SU(5) into SO(10)

    Get PDF
    We embed the flipped SU(5) models into the SO(10) models. After the SO(10) gauge symmetry is broken down to the flipped SU(5) \times U(1)_X gauge symmetry, we can split the five/one-plets and ten-plets in the spinor \mathbf{16} and \mathbf{\bar{16}} Higgs fields via the stable sliding singlet mechanism. As in the flipped SU(5) models, these ten-plet Higgs fields can break the flipped SU(5) gauge symmetry down to the Standard Model gauge symmetry. The doublet-triplet splitting problem can be solved naturally by the missing partner mechanism, and the Higgsino-exchange mediated proton decay can be suppressed elegantly. Moreover, we show that there exists one pair of the light Higgs doublets for the electroweak gauge symmetry breaking. Because there exist two pairs of additional vector-like particles with similar intermediate-scale masses, the SU(5) and U(1)_X gauge couplings can be unified at the GUT scale which is reasonably (about one or two orders) higher than the SU(2)_L \times SU(3)_C unification scale. Furthermore, we briefly discuss the simplest SO(10) model with flipped SU(5) embedding, and point out that it can not work without fine-tuning.Comment: RevTex4, 28 pages, 3 figures, typos correcte

    Localized Backreacted Flavor Branes in Holographic QCD

    Full text link
    We investigate the perturbative (in gsND8g_s N_{D8}) backreaction of localized D8 branes in D4-D8 systems including in particular the Sakai Sugimoto model. We write down the explicit expressions of the backreacted metric, dilaton and RR form. We find that the backreaction remains small up to a radial value of uâ‰Șℓs/(gsND8)u \ll \ell_s/(g_s N_{D8}), and that the background functions are smooth except at the D8 sources. In this perturbative window, the original embedding remains a solution to the equations of motion. Furthermore, the fluctuations around the original embedding, describing scalar mesons, do not become tachyonic due to the backreaction in the perturbative regime. This is is due to a cancelation between the DBI and CS parts of the D8 brane action in the perturbed background.Comment: 1+48 pages (7 figures) + 15 pages, citations added & minor correction

    Holographic flavor on the Higgs branch

    Get PDF
    In this paper we study the holographic dual, in several spacetime dimensions, of the Higgs branch of gauge theories with fundamental matter. These theories contain defects of various codimensionalities, where the matter fields are located. In the holographic description the matter is added by considering flavor brane probes in the supergravity backgrounds generated by color branes, while the Higgs branch is obtained when the color and flavor branes recombine with each other. We show that, generically, the holographic dual of the Higgs phase is realized by means of the addition of extra flux on the flavor branes and by choosing their appropriate embedding in the background geometry. This suggests a dielectric interpretation in terms of the color branes, whose vacuum solutions precisely match the F- and D-flatness conditions obtained on the field theory side. We further compute the meson mass spectra in several cases and show that when the defect added has codimension greater than zero it becomes continuous and gapless.Comment: 59 pages, 1 figure;v2: references adde
    • 

    corecore