334 research outputs found

    Protocols for the assessment of building sustainability level. A new proposal for the Italian context

    Get PDF
    The paper aims at illustrating an innovative methodology for the development of a system to assess and rate the sustainability level of buildings, with particular reference to the Italian context. First, a review of the state of the art is presented, focusing on the existing sustainability tools, which characterize the building sector. Afterwards, the main criticalities of the current systems are pointed out, laying the basis for the setting-up of the new protocol. Consequently, the paper illustrates the process leading to the development of the new sustainability evaluation system, showing all the main steps towards its final inner structure. Finally, the research work introduces the concept of ‘benchmark’, underlining its importance within the new protocol framework. In particular, the absence of reference or limit values for some performance indicators is emphasized and a computation methodology is proposed for those performance indicators lacking of benchmark values, with respect to the Italian background. As a result, the paper provides an effective methodological and operative tool for decision makers, such as designers, constructors, developers and users of sustainability systems. The outcomes offer a contribution to the national and international development of methods and guidelines, supporting the overall sustainability evaluations in the building field

    What Have We Learned in 30 Years of Investigations on Bari Transposons?

    Get PDF
    Transposable elements (TEs) have been historically depicted as detrimental genetic entities that selfishly aim at perpetuating themselves, invading genomes, and destroying genes. Scientists often co-opt “special” TEs to develop new and powerful genetic tools, that will hopefully aid in changing the future of the human being. However, many TEs are gentle, rarely unleash themselves to harm the genome, and bashfully contribute to generating diversity and novelty in the genomes they have colonized, yet they offer the opportunity to develop new molecular tools. In this review we summarize 30 years of research focused on the Bari transposons. Bari is a “normal” transposon family that has colonized the genomes of several Drosophila species and introduced genomic novelties in the melanogaster species. We discuss how these results have contributed to advance the field of TE research and what future studies can still add to the current knowledge

    Microbial ecology of retail ready-to-eat escarole and red chicory sold in Palermo City, Italy

    Get PDF
    Background: Ready-To-Eat (RTE) foods include any edible food that is commonly consumed raw. This study aimed at evaluation of microbial ecology of retail RTE escarole and red chicory sold in Palermo city, Italy. Methods: A total of 32 mono-varietal RTE samples, including escarole (n=16) and red chicory (n=16) samples were obtained from Palermo, Italy. Both RTE vegetables at expiry date were analyzed to quantify spoilage bacteria, pathogenic bacteria, and yeast. All different colonies were isolated and identified on the basis of phenotypic characteristics and genetic polymorphisms by random amplification of polymorphic DNA-Polymerase Chain Reaction (PCR) and further genotype by sequencing the 16S rRNA gene. The statistical analysis was conducted with SAS 9.2 software (Statistical Analysis System Institute Inc., Cary, NC, USA). Results: The level of Listeria monocytogenes and coagulase-positive staphylococci were below the detection. Total microbial counts were above 8 log10 colony forming unit/g in RTE red chicory, while they were about 1 log cycle lower in escarole. In general, escarole showed lower levels for all microbial groups than red chicory with the exception of the total yeast. A total of 13 strains were identified into ten species belonging to six genera as Bacillus, Erwinia, Pantoea, Pseudomonas, Microbacterium, and Rahnella. The most numerous identified genera were Pseudomonas and Pantoea. Conclusion: This work pointed out the relevance of implementing good hygiene practices during processing in order to prolong quality parameters and acceptability of mono-varietal salads

    In situ polymerization of soil organic matter by oxidative biomimetic catalysis.

    Get PDF
    Background: Agricultural practices that enhance organic matter content in soil can play a central role in sequestering soil organic carbon (SOC) and reducing greenhouse gases emissions. Methods: We used a water-soluble iron-porphyrin to catalyze directly in situ oxidative polymerization of soil organic matter in the presence of H2O2 oxidant, with the aim to enhance OC stabilization, and, consequently, reduce CO2 emissions from soil. The occurred SOC stabilization was assessed by monitoring soil aggregate stability, OC distribution in water-soluble aggregates, soil respiration, and extraction yields of humic and fulvic acids. Results: Soil treatment with H2O2 and iron-porphyrin increased the physical stability of water-stable soil aggregates and the total OC content in small aggregates, thereby suggesting that the catalyzed oxidative polymerization increased OC in soil and induced a soil physical improvement. The significant reduction of CO2 respired by the catalyst- and H2O2-treated soil indicated an enhanced resistance of polymerized SOC to microbial mineralization. The catalyzed oxidative polymerization of SOC also significantly decreased the extraction yields of humic and fulvic acids from soil. Conclusions: The oxidative catalytic technology described here may become an efficient agricultural practice for OC sequestration in soils and contribute to mitigate global changes

    Indigenous yeast communities in the environment of ‘Rovello bianco’’ grape variety and their use in commercial white wine fermentation

    Get PDF
    The indigenous yeast communities associated with several vineyard habitats were analysed. Wild yeasts were isolated, differentiated at strain level and identified. A phylogenetic tree based on partial 26S rRNA genes was constructed. The strains were characterized and the indigenous Saccharomyces cerevisiae GR1 was then used to carry out a vinification process and compared with a commercial yeast. Wines obtained were subjected to chemical and sensory analysis. The comparison between the two products highlighted differences due to the fer- menting strains employed. The vineyard environment was found to strongly influence the composition of yeast communities, thus, confirming the theory of ‘terr- oir’ on the expression of wines. Moreover, vineyard inhabiting birds were in part responsible for the dis- semination of fermentative yeasts during their feedin

    Evaluation of the fermentation dynamics of commercial baker’s yeast in presence of pistachio powder to produce lysine-enriched breads

    Get PDF
    The present work was carried out to evaluate the microbiological, physicochemical, and sensory characteristics of fortified pistachio breads. Pistachio powder (5% w/w) was added to flour or semolina and fermented by a commercial baker’s yeast (Saccharomyces cerevisiae). Pistachio powder did not influence the biological leavening of the doughs. The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that the leavening process occurred similarly for all trials. The concentration of yeasts increased during fermentation and reached levels of 108 CFU/g after 2 h. Pistachio powder decreased the height and softness of the final breads and increased cell density of the central slices. The amount of lysine after baking increased in pistachio breads and this effect was stronger for semolina rather than flour trials. Sensory evaluation indicated that fortified breads processed from semolina were those more appreciated by the judges. This work clearly indicated that the addition of pistachio powder in bread production represents a promising strategy to increase the availability of lysine in cereal-based fermented products

    Yeasts and moulds contaminants of food ice cubes and their survival in different drinks

    Get PDF
    Aims: To evaluate the levels of unicellular and filamentous fungi in ice cubes produced at different levels and to determine their survival in alcoholic beverages and soft drinks. Methods and Results: Sixty samples of ice cubes collected from home level (HL) productions, bars and pubs (BP) and industrial manufacturing plants (MP) were investigated for the presence and cell density of yeasts and moulds. Moulds were detected in almost all samples, while yeasts developed from the majority of HL and MP samples. Representative colonies of microfungi were subjected to phenotypic and genotypic characterization. The identification was carried out by restriction fragment length polymorphism (RFLP) analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5·8S rRNA gene. The process of yeast identification was concluded by sequencing the D1/D2 region of the 26S rRNA gene. The fungal biodiversity associated with food ice was represented by nine yeast and nine mould species. Strains belonging to Candida parapsilosis and Cryptococcus curvatus, both opportunistic human pathogens, and Penicillium glabrum, an ubiquitous mould in the ice samples analysed, were selected to evaluate the effectiveness of the ice cubes to transfer pathogenic microfungi to consumers, after addition to alcoholic beverages and soft drinks. All strains retained their viability. Conclusions: The survival test indicated that the most common mode of consumption of ice cubes, through its direct addition to drinks and beverages, did not reduce the viability of microfungi. Significance and Impact of the Study: This study evidenced the presence of microfungi in food ice and ascertained their survival in soft drinks and alcoholic beverages

    Evidence of the physical interaction between rpl22 and the transposable element doc5, a heterochromatic transposon of drosophila melanogaster

    Get PDF
    Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transpos-able element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila
    • 

    corecore