7 research outputs found

    Development of bone marrow lesions is associated with adverse effects on knee cartilage while resolution is associated with improvement - a potential target for prevention of knee osteoarthritis: a longitudinal study

    Get PDF
    INTRODUCTION: To examine the relationship between development or resolution of bone marrow lesions (BMLs) and knee cartilage properties in a 2 year prospective study of asymptomatic middle-aged adults. METHODS: 271 adults recruited from the Melbourne Collaborative Cohort Study, underwent a magnetic resonance imaging scan (MRI) of their dominant knee at baseline and again approximately 2 years later. Cartilage volume, cartilage defects and BMLs were determined at both time points. RESULTS: Among 234 subjects free of BMLs at baseline, 33 developed BMLs over 2 years. The incidence of BMLs was associated with progression of tibiofemoral cartilage defects (OR 2.63 (95% CI 0.93, 7.44), P = 0.07 for medial compartment; OR 3.13 (95% CI 1.01, 9.68), P = 0.048 for lateral compartment). Among 37 subjects with BMLs at baseline, 17 resolved. Resolution of BMLs was associated with reduced annual loss of medial tibial cartilage volume (regression coefficient -35.9 (95%CI -65, -6.82), P = 0.02) and a trend for reduced progression of medial tibiofemoral cartilage defects (OR 0.2 (95% CI 0.04, 1.09), P = 0.06). CONCLUSIONS: In this cohort study of asymptomatic middle-aged adults the development of new BMLs was associated with progressive knee cartilage pathology while resolution of BMLs prevalent at baseline was associated with reduced progression of cartilage pathology. Further work examining the relationship between changes and BML and cartilage may provide another important target for the prevention of knee osteoarthritis

    Modeling on fluid flow and inclusion motion in centrifugal continuous casting strands

    Get PDF
    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed

    Model-independent measurement of mixing parameters in D0 → K S 0 π+π− decays

    Get PDF
    The first model-independent measurement of the charm mixing parameters in the decay D 0 → K S 0 π + π − is reported, using a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb−1 at a centre-of-mass energy of 7 TeV. The measured values are x=(−0.86±0.53±0.17)×10−2,y=(+0.03±0.46±0.13)×10−2, x=(−0.86±0.53±0.17)×10−2,y=(+0.03±0.46±0.13)×10−2, where the first uncertainties are statistical and include small contributions due to the external input for the strong phase measured by the CLEO collaboration, and the second uncertainties are systematic

    Branching fraction and CP asymmetry of the decays B+ -> K-S(0)pi(+) and B+ -> (KSK+)-K-0

    No full text
    An analysis of B+→KS0π+ and B+→KS0K+ decays is performed with the LHCb experiment. The pp collision data used correspond to integrated luminosities of 1fb-1 and 2fb-1 collected at centre-of-mass energies of √s=7TeV and √s=8TeV, respectively. The ratio of branching fractions and the direct CP asymmetries are measured to be B(B+→KS0K+)/B(B+→KS0π+)=0.064±0.009 (stat.)±0.004(syst.), ACP(B+→KS0π+)=-0.022±0.025(stat.)±0.010 (syst.) and ACP(B+→KS0K+)=-0.21±0.14 (stat.)±0.01 (syst.). The data sample taken at √s=7 TeV is used to search for Bc+→KS0K+ decays and results in the upper limit (fc{dot operator}B(Bc+→KS0K+))/(fu{dot operator}B(B+→KS0π+))<5.8×10-2 at 90% confidence level, where fc and fu denote the hadronisation fractions of a b- quark into a Bc+ or a B+ meson, respectively. © 2013 CERN

    Model-independent measurement of mixing parameters in D-0 -> K-S(0)pi(+)pi(-) decays

    No full text
    The first model-independent measurement of the charm mixing parameters in the decay D-0 -> K-S(0)pi(+)pi(-) is reported, using a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 1.0 fb(-1) at a centre-of-mass energy of 7 TeV. The measured values are x = (0.86 +/- 0.53 +/- 0.17) x 10(-2), y = (+0.03 +/- 0.46 +/- 0.13) x 10(-2), where the first uncertainties are statistical and include small contributions due to the external input for the strong phase measured by the CLEO collaboration, and the second uncertainties are systematic
    corecore