1,331 research outputs found
Phased-array antenna phase control circuit using frequency multiplication
Circuit separates out, from multiplied signals, antenna element signals which have desirable phase angles and feeds them to appropriate antenna elements of phased array. System may be used in either transmitting or receiving mode
Phase interpolation circuits using frequency multiplication for phased arrays
Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system
Phase control circuits using frequency multiplications for phased array antennas
A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits
Improved circularly polarized antenna
Antenna includes two sets of linearly polarized elements. Each set contains slots in parallel array. Sets are mutually orthogonal and are driven in phase quadrature. By changing lengths of slots or their separations, antenna beamwidth can be changed over wide range. Similar results are achieved with dipole configuration
Array phasing device Patent
Apparatus for generating microwave signals at progressively related phase angles for driving antenna arra
Non-dispersive optics using storage of light
We demonstrate the non-dispersive deflection of an optical beam in a
Stern-Gerlach magnetic field. An optical pulse is initially stored as a
spin-wave coherence in thermal rubidium vapour. An inhomogeneous magnetic field
imprints a phase gradient onto the spin wave, which upon reacceleration of the
optical pulse leads to an angular deflection of the retrieved beam. We show
that the obtained beam deflection is non-dispersive, i.e. its magnitude is
independent of the incident optical frequency. Compared to a Stern-Gerlach
experiment carried out with propagating light under the conditions of
electromagnetically induced transparency, the estimated suppression of the
chromatic aberration reaches 10 orders of magnitude.Comment: 11 pages, 4 figures, accepted for publication in Physical Review
Circularly Polarized Antenna with Wide Projection and Range: A Concept
The slotted antenna structure discussed in this tech brief radiates a circularly polarized beam pattern over a wide angle. The basic structure, composed of waveguide slots, can be flush mounted in an airplane or spacecraft, and could be used in the communication link between an airplane and an air traffic satellite
Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++
Quantum Key Distribution (QKD) is an innovative technology which exploits the
laws of quantum mechanics to generate and distribute unconditionally secure
cryptographic keys. While QKD offers the promise of unconditionally secure key
distribution, real world systems are built from non-ideal components which
necessitates the need to model and understand the impact these non-idealities
have on system performance and security. OMNeT++ has been used as a basis to
develop a simulation framework to support this endeavor. This framework,
referred to as "qkdX" extends OMNeT++'s module and message abstractions to
efficiently model optical components, optical pulses, operating protocols and
processes. This paper presents the design of this framework including how
OMNeT++'s abstractions have been utilized to model quantum optical components,
optical pulses, fiber and free space channels. Furthermore, from our toolbox of
created components, we present various notional and real QKD systems, which
have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche
(Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich,
Switzerland, September 3-4, 201
Cybersecurity Architectural Analysis for Complex Cyber-Physical Systems
In the modern military’s highly interconnected and technology-reliant operational environment, cybersecurity is rapidly growing in importance. Moreover, as a number of highly publicized attacks have occurred against complex cyber-physical systems such as automobiles and airplanes, cybersecurity is no longer limited to traditional computer systems and IT networks. While architectural analysis approaches are critical to improving cybersecurity, these approaches are often poorly understood and applied in ad hoc fashion. This work addresses these gaps by answering the questions: 1. “What is cybersecurity architectural analysis?” and 2. “How can architectural analysis be used to more effectively support cybersecurity decision making for complex cyber-physical systems?” First, a readily understandable description of key architectural concepts and definitions is provided which culminates in a working definition of “cybersecurity architectural analysis,” since none is available in the literature. Next, we survey several architectural analysis approaches to provide the reader with an understanding of the various approaches being used across government and industry. Based on our proposed definition, the previously introduced key concepts, and our survey results, we establish desirable characteristics for evaluating cybersecurity architectural analysis approaches. Lastly, each of the surveyed approaches is assessed against the characteristics and areas of future work are identified
An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens
Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O2-limited conditions
- …