1,890 research outputs found

    The origin of the spurious iron spread in the globular cluster NGC 3201

    Full text link
    NGC 3201 is a globular cluster suspected to have an intrinsic spread in the iron content. We re-analysed a sample of 21 cluster stars observed with UVES-FLAMES at the Very Large Telescope and for which Simmerer et al. found a 0.4 dex wide [Fe/H] distribution with a metal-poor tail. We confirmed that when spectroscopic gravities are adopted, the derived [Fe/H] distribution spans ~0.4 dex. On the other hand, when photometric gravities are used, the metallicity distribution from Fe I lines remains large, while that derived from Fe II lines is narrow and compatible with no iron spread. We demonstrate that the metal-poor component claimed by Simmerer et al. is composed by asymptotic giant branch stars that could be affected by non local thermodynamical equilibrium effects driven by iron overionization. This leads to a decrease of the Fe I abundance, while leaving the Fe II abundance unaltered. A similar finding has been already found in asymptotic giant branch stars of the globular clusters M5 and 47 Tucanae. We conclude that NGC 3201 is a normal cluster, with no evidence of intrinsic iron spread.Comment: Accepted for publication by ApJ, 7 pages, 4 figure

    No evidence of mass segregation in the low mass Galactic globular cluster NGC 6101

    Get PDF
    We used a combination of Hubble Space Telescope and ground based data to probe the dynamical state of the low mass Galactic globular cluster NGC 6101. We have re-derived the structural parameters of the cluster by using star counts and we find that it is about three times more extended than thought before. By using three different indicators, namely the radial distribution of Blue Straggler Stars, that of Main Sequence binaries and the luminosity (mass) function, we demonstrated that NGC 6101 shows no evidence of mass segregation, even in the innermost regions. Indeed, both the BSS and the binary radial distributions fully resemble that of any other cluster population. In addition the slope of the luminosity (mass) functions does not change with the distance, as expected for non relaxed stellar systems. NGC 6101 is one of the few globulars where the absence of mass segregation has been observed so far. This result provides additional support to the use of the "dynamical clock" calibrated on the radial distribution of the Blue Stragglers as a powerful indicator of the cluster dynamical age.Comment: Accepted for publication by ApJ; 33 pages, 13 figure

    The Terzan 5 puzzle: discovery of a third, metal-poor component

    Full text link
    We report on the discovery of 3 metal-poor giant stars in Terzan 5, a complex stellar system in the the Galactic bulge, known to have two populations at [Fe/H]=-0.25 and +0.3. For these 3 stars we present new echelle spectra obtained with NIRSPEC at Keck II, which confirm their radial velocity membership and provide average [Fe/H]=-0.79 dex iron abundance and [alpha/Fe]=+0.36 dex enhancement. This new population extends the metallicity range of Terzan~5 0.5 dex more metal poor, and it has properties consistent with having formed from a gas polluted by core collapse supernovae.Comment: Accepted for publication on ApJ Lette

    Probing the MSP prenatal stage: the optical identification of the X-ray burster EXO 1745-248 in Terzan 5

    Get PDF
    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Director's Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.Comment: ApJ Letter, in pres

    Variable stars in Terzan 5: additional evidence of multi-age and multi-iron stellar populations

    Get PDF
    Terzan 5 is a complex stellar system in the Galactic bulge, harboring stellar populations with very different iron content ({\Delta}[Fe/H] ~1 dex) and with ages differing by several Gyrs. Here we present an investigation of its variable stars. We report on the discovery and characterization of three RR Lyrae stars. For these newly discovered RR Lyrae and for six Miras of known periods we provide radial velocity and chemical abundances from spectra acquired with X-SHOOTER at the VLT. We find that the three RR Lyrae and the three short period Miras (P<300 d) have radial velocity consistent with being Terzan 5 members. They have sub-solar iron abundances and enhanced [{\alpha}/Fe], well matching the age and abundance patterns of the 12 Gyr metal-poor stellar populations of Terzan 5. Only one, out of the three long period (P>300 d) Miras analyzed in this study, has a radial velocity consistent with being Terzan 5 member. Its super-solar iron abundance and solar-scaled [{\alpha}/Fe] nicely match the chemical properties of the metal rich stellar population of Terzan 5 and its derived mass nicely agrees with being several Gyrs younger than the short period Miras. This young variable is an additional proof of the surprising young sub-population discovered in Terzan 5.Comment: 20 pages, 4 figures, in press on the Ap

    Proper motions in Terzan 5: membership of the multi-iron sub-populations and first constrain to the orbit

    Get PDF
    By exploiting two sets of high-resolution images obtained with HST ACS/WFC over a baseline of ~10 years we have measured relative proper motions of ~70,000 stars in the stellar system Terzan 5. The results confirm the membership of the three sub-populations with different iron abudances discovered in the system. The orbit of the system has been derived from a first estimate of its absolute proper motion, obtained by using bulge stars as reference. The results of the integration of this orbit within an axisymmetric Galactic model exclude any external accretion origin for this cluster. Terzan 5 is known to have chemistry similar to the Galactic bulge; our findings support a kinematic link between the cluster and the bulge, further strengthening the possibility that Terzan 5 is the fossil remnant of one of the pristine clumps that originated the bulge.Comment: 25 pages, 14 figures, accepted for publication by Ap

    A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans ~0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over-ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table
    corecore